

Safety Data Sheet

Copyright, 2019, 3M Company All rights reserved. Copying and/or downloading of this information for the purpose of properly utilising 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document group: 30-5454-1 **Version number:** 1.00 **Revision date:** 05/03/2019 **Supersedes date:** Initial issue.

Transportation version number: 2.00 (03/12/2019)

This Safety Data Sheet has been prepared in accordance with the REACH Regulation (EC) 1907/2006 and its modifications.

IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

1.1. Product identifier

Scotch-Weld(TM) Epoxy Structural Adhesive 7271 B/A

Product Identification Numbers

FS-9100-5488-1

7100075748

1.2. Relevant identified uses of the substance or mixture and uses advised against

Identified uses

Adhesive

1.3. Details of the supplier of the safety data sheet

Address: 3M Ireland Limited, The Iveagh Building, The Park, Carrickmines, Dublin 18.

Telephone: +353 1 280 3555 E Mail: tox.uk@mmm.com Website: www.3M.com

1.4. Emergency telephone number

+44 (0)1344 858 000

This product is a kit or a multipart product which consists of multiple, independently packaged components. A Safety Data Sheet for each of these components is included. Please do not separate the component Safety Data Sheets from this cover page. The document numbers of the MSDSs for components of this product are:

30-5129-9, 30-5003-6

TRANSPORTATION INFORMATION

FS-9100-5488-1

ADR/RID: UN3077, NOT RESTRICTED AS PER SPECIAL PROVISION 375, ENVIRONMENTALLY HAZARDOUS SUBSTANCE EXEMPTION, (EPOXY RESIN), (POLYAMIDOAMINE), III, --.

IMDG-CODE: UN3077, NOT RESTRICTED AS PER IMDG CODE 2.10.2.7, MARINE POLLUTANT EXCEPTION,

(EPOXY RESIN), (POLYAMIDOAMINE), III, IMDG-Code segregation code: NONE, EMS: --. **ICAO/IATA:** UN3077, NOT RESTRICTED AS PER SPECIAL PROVISION A197, ENVIRONMENTALLY HAZARDOUS SUBSTANCE EXCEPTION, (EPOXY RESIN), (POLYAMIDOAMINE), III.

KIT LABEL

2.1. Classification of the substance or mixture CLP REGULATION (EC) No 1272/2008

CLASSIFICATION:

Serious Eye Damage/Eye Irritation, Category 2 - Eye Irrit. 2; H319 Skin Corrosion/Irritation, Category 2 - Skin Irrit. 2; H315 Skin Sensitization, Category 1A - Skin Sens. 1A; H317 Hazardous to the Aquatic Environment (Acute), Category 1 - Aquatic Acute 1; H400 Hazardous to the Aquatic Environment (Chronic), Category 1 - Aquatic Chronic 1; H410

For full text of H phrases, see Section 16.

2.2. Label elements CLP REGULATION (EC) No 1272/2008

SIGNAL WORD

WARNING.

Symbols:

GHS07 (Exclamation mark) |GHS09 (Environment) |

Contains:

Triethylenetetramine; 2-Piperazin-1-ylethylamine; Trimethylolpropane triacrylate; 4,4'-Isopropylidenediphenol, oligomeric reaction products with 1-chloro-2,3-epoxypropane; Phenol-formaldehyde polymer, glycidyl ether; 3,3'-Ethylenedioxybis(propylamine); Fatty acids, C18-unsaturated, dimers, oligomeric reaction products with tall-oil fatty acids and triethylenetetramine

HAZARD STATEMENTS:

H319 Causes serious eye irritation. H315 Causes skin irritation.

H317 May cause an allergic skin reaction.

H410 Very toxic to aquatic life with long lasting effects.

PRECAUTIONARY STATEMENTS

Prevention:

P280E Wear protective gloves.

P273 Avoid release to the environment.

Response:

P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if

Scotch-Weld(TM) Epoxy Structural Adhesive 7271 B/A

present and easy to do. Continue rinsing.

P333 + P313 If skin irritation or rash occurs: Get medical advice/attention.

Disposal:

P501 Dispose of contents/container in accordance with applicable local/regional/national/international

regulations.

For containers not exceeding 125 ml the following Hazard and Precautionary statements may be used:

<=125 ml Hazard statements

H317 May cause an allergic skin reaction.

<=125 ml Precautionary statements

Prevention:

P280E Wear protective gloves.

Response:

P333 + P313 If skin irritation or rash occurs: Get medical advice/attention.

Refer to Safety Data Sheet for component % unknown values (www.3M.com/msds).

Revision information:

No revision information

Safety Data Sheet

Copyright, 2020, 3M Company All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document group:
 30-5129-9
 Version number:
 2.00

 Revision date:
 26/08/2020
 Supersedes date:
 05/03/2019

Transportation version number:

This Safety Data Sheet has been prepared in accordance with the REACH Regulation (EC) 1907/2006 and its modifications.

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Scotch-Weld(tm) Epoxy Structural Adhesive 7271 B/A: Part B

1.2. Relevant identified uses of the substance or mixture and uses advised against

Identified uses

Adhesive

1.3. Details of the supplier of the safety data sheet

Address: 3M Ireland Limited, The Iveagh Building, The Park, Carrickmines, Dublin 18.

Telephone: +353 1 280 3555 E Mail: tox.uk@mmm.com Website: www.3M.com

1.4. Emergency telephone number

Emergency medical information: 8am-10pm (seven days) contact National Poisons Information Centre, Beaumont Hospital, Dublin 9 DOV2NO, Ireland. Telephone Number: +353 (0)1 809 2166

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture

CLP REGULATION (EC) No 1272/2008

The health and environmental classifications of this material have been derived using the calculation method, except in cases where test data are available or the physical form impacts classification. Classification(s) based on test data or physical form are noted below, if applicable.

CLASSIFICATION:

Serious Eye Damage/Eye Irritation, Category 2 - Eye Irrit. 2; H319 Skin Corrosion/Irritation, Category 2 - Skin Irrit. 2; H315 Skin Sensitization, Category 1 - Skin Sens. 1; H317 Hazardous to the Aquatic Environment (Acute), Category 1 - Aquatic Acute 1; H400 Hazardous to the Aquatic Environment (Chronic), Category 1 - Aquatic Chronic 1; H410

For full text of H phrases, see Section 16.

2.2. Label elements

CLP REGULATION (EC) No 1272/2008

SIGNAL WORD

WARNING.

Symbols:

GHS07 (Exclamation mark) |GHS09 (Environment) |

Pictograms

Ingredients:

Ingredient	CAS Nbr	EC No.	% by Wt
reaction product: bisphenol-A-(epichlorhydrin)	25068-38-6	500-033-5	10 - 50
Phenol-formaldehyde polymer, glycidyl ether	28064-14-4		10 - 50
2,2-bis(acryloyloxymethyl)butyl acrylate	15625-89-5	239-701-3	25 - 35

HAZARD STATEMENTS:

H319 Causes serious eye irritation.

H315 Causes skin irritation.

H317 May cause an allergic skin reaction.

H410 Very toxic to aquatic life with long lasting effects.

PRECAUTIONARY STATEMENTS

Prevention:

P280E Wear protective gloves.

P273 Avoid release to the environment.

Response:

P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if

present and easy to do. Continue rinsing.

P333 + P313 If skin irritation or rash occurs: Get medical advice/attention.

Disposal:

P501 Dispose of contents/container in accordance with applicable local/regional/national/international

regulations.

For containers not exceeding 125 ml the following Hazard and Precautionary statements may be used:

<=125 ml Hazard statements

H317 May cause an allergic skin reaction.

<=125 ml Precautionary statements

Prevention:

Scotch-Weld(tm) Epoxy Structural Adhesive 7271 B/A: Part B

P280E Wear protective gloves.

Response:

P333 + P313 If skin irritation or rash occurs: Get medical advice/attention.

11% of the mixture consists of components of unknown acute oral toxicity.

Contains 63% of components with unknown hazards to the aquatic environment.

2.3. Other hazards

None known.

SECTION 3: Composition/information on ingredients

Ingredient	CAS Nbr	EC No.	REACH	% by Wt	Classification
			Registration No.		
ether	28064-14-4			10 - 50	Skin Sens. 1, H317; Aquatic Chronic 2, H411
Aluminium hydroxide	21645-51-2	244-492-7	01- 2119529246- 39	5 - 50	Substance not classified as hazardous
reaction product: bisphenol-A- (epichlorhydrin)	25068-38-6	500-033-5	01- 2119456619- 26	10 - 50	Skin Irrit. 2, H315; Eye Irrit. 2, H319; Skin Sens. 1, H317; Aquatic Chronic 2, H411
2,2-bis(acryloyloxymethyl)butyl acrylate	15625-89-5	239-701-3	01- 2119489896- 11	25 - 35	Skin Irrit. 2, H315; Eye Irrit. 2, H319; Skin Sens. 1B, H317 - Nota D Aquatic Acute 1, H400,M=1; Aquatic Chronic 1, H410,M=1
Acrylic copolymer	Trade Secret			1 - 15	Substance not classified as hazardous
Siloxanes and Silicones, di-Me, reaction products with silica	67762-90-7			1 - 10	Substance with an occupational exposure limit
Silicon dioxide	7631-86-9	231-545-4		0.1 - 1.5	Substance with an occupational exposure limit
acrylic acid	79-10-7	201-177-9	01- 2119452449- 31	< 0.5	Flam. Liq. 3, H226; Acute Tox. 4, H332; Acute Tox. 4, H312; Acute Tox. 4, H302; Skin Corr. 1A, H314; STOT SE 3, H335; Aquatic Acute 1, H400,M=1 - Nota D Aquatic Chronic 2, H411

Please see section 16 for the full text of any H statements referred to in this section

For information on ingredient occupational exposure limits or PBT or vPvB status, see sections 8 and 12 of this SDS

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

Skin contact

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

Eye contact

Immediately flush with large amounts of water for at least 15 minutes. Remove contact lenses if easy to do. Continue rinsing. Immediately get medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1 Information on toxicological effects

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

Closed containers exposed to heat from fire may build pressure and explode.

Hazardous Decomposition or By-Products

Substance

Condition

Hydrogen Chloride

During combustion.

5.3. Advice for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapours, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of collected material as soon as possible.

6.4. Reference to other sections

Refer to Section 8 and Section 13 for more information

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Avoid breathing of vapours created during the cure cycle. Decontaminate work surfaces frequently to avoid exposure by contact. Do not breathe dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Avoid contact with oxidising agents (eg. chlorine, chromic acid etc.)

7.2. Conditions for safe storage including any incompatibilities

Keep container tightly closed. Store away from heat. Store away from acids. Store away from oxidising agents.

7.3. Specific end use(s)

See information in Section 7.1 and 7.2 for handling and storage recommendations. See Section 8 for exposure controls and personal protection recommendations.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	CAS Nbr	Agency	Limit type	Additional comments
Silicon dioxide	67762-90-7	UK HSC	TWA(as respirable dust):2.4 mg/m3;TWA(as inhalable dust):6 mg/m3	
Silicon dioxide	7631-86-9	UK HSC	TWA(as respirable dust):2.4 mg/m3;TWA(as inhalable dust):6 mg/m3	
acrylic acid	79-10-7	UK HSC	TWA:29 mg/m3(10 ppm);STEL:59 mg/m3(20 ppm)	

UK HSC: UK Health and Safety Commission

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

Biological limit values

No biological limit values exist for any of the components listed in Section 3 of this safety data sheet.

Derived no effect level (DNEL)

Ingredient	Degradation	Population	Human exposure	DNEL
	Product		pattern	
acrylic acid		Worker	Dermal, Short-term	1 mg/cm2
			exposure, Local effects	
acrylic acid		Worker	Inhalation, Long-term	30 mg/m ³
			exposure (8 hours), Local	
			effects	
acrylic acid		Worker	Inhalation, Short-term	30 mg/m ³
			exposure, Local effects	

Predicted no effect concentrations (PNEC)

Ingredient	Degradation	Compartment	PNEC
	Product		

acrylic acid	Agricultural soil	1 mg/kg d.w.
acrylic acid	Freshwater	0.003 mg/l
acrylic acid	Freshwater sediments	0.236 mg/kg d.w.
acrylic acid	Intermittent releases to water	0.0013 mg/l
acrylic acid	Marine water	0.0003 mg/l
acrylic acid	Sewage Treatment Plant	0.9 mg/l

Recommended monitoring procedures: Information on recommended monitoring procedures can be obtained from Indust. Inspect./Ministry (IE)

8.2. Exposure controls

In addition, refer to the annex for more information.

8.2.1. Engineering controls

Provide ventilated enclosure for heat curing. Curing enclosures must be exhausted to outdoors or to a suitable emission control device. Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapours/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Full face shield.

Indirect vented goggles.

Applicable Norms/Standards

Use eye/face protection conforming to EN 166

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing. Note: Nitrile gloves may be worn over polymer laminate gloves to improve dexterity. Gloves made from the following material(s) are recommended:

MaterialThickness (mm)Breakthrough TimePolymer laminateNo data availableNo data available

Applicable Norms/Standards
Use gloves tested to EN 374

If this product is used in a manner that presents a higher potential for exposure (eg. spraying, high splash potential etc.), then use of protective coveralls may be necessary. Select and use body protection to prevent contact based on the results of an exposure assessment. The following protective clothing material(s) are recommended: Apron - polymer laminate

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following

Scotch-Weld(tm) Epoxy Structural Adhesive 7271 B/A: Part B

respirator type(s) to reduce inhalation exposure:

Full facepiece air-purifying respirator suitable for organic vapours and particulates

For questions about suitability for a specific application, consult with your respirator manufacturer.

Applicable Norms/Standards

Use a respirator conforming to EN 136: filter types A & P

8.2.3. Environmental exposure controls

Refer to Annex

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance

Physical stateSolid.ColourYellow

Specific Physical Form: OdorPaste
Acrylate

Odour threshold No data available. No data available. рH Boiling point/boiling range No data available. **Melting point** Not applicable. Flammability (solid, gas) Not classified **Explosive properties** Not classified Not classified **Oxidising properties** Flash point No data available. Autoignition temperature No data available. Flammable Limits(LEL) Not applicable. Flammable Limits(UEL) Not applicable. Not applicable. Vapour pressure

Relative density 1.2 - 1.35 [Ref Std:WATER=1]

Water solubilityNo data available.Solubility- non-waterNo data available.Partition coefficient: n-octanol/waterNo data available.Evaporation rateNot applicable.Vapour densityNot applicable.Decomposition temperatureNo data available.

 Viscosity
 100 - 160 Pa-s [@ 23 °C] [Test Method: Brookfield]

 Density
 1.2 - 1.35 g/cm3 [@ 23 °C] [Ref Std: WATER=1]

9.2. Other information

EU Volatile Organic CompoundsNo data available.Molecular weightNo data available.Percent volatileNo data available.

SECTION 10: Stability and reactivity

10.1 Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

10.2 Chemical stability

Stable.

10.3 Possibility of hazardous reactions

Hazardous polymerisation may occur. High temperatures; in contact with oxidizing agents

10.4 Conditions to avoid

Heat

Heat is generated during cure. Do not cure a mass larger than 50 grams in a confined space to prevent a premature exothermic reaction with production of intense heat and smoke.

10.5 Incompatible materials

Alkali and alkaline earth metals.

Strong acids.

Strong oxidising agents.

10.6 Hazardous decomposition products

<u>Substance</u> <u>Condition</u>

Aldehydes. Oxidation, heat or reaction Hydrocarbons. Oxidation, heat or reaction Carbon monoxide Oxidation, heat or reaction Carbon dioxide. Oxidation, heat or reaction

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 11 are based on UN GHS calculation rules and classifications derived from 3M assessments.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

No health effects are expected.

Skin contact

Mild Skin Irritation: Signs/symptoms may include localised redness, swelling, itching, and dryness. Allergic skin reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching. May cause additional health effects (see below).

Eve contact

Corrosive (eye burns): Signs/symptoms may include cloudy appearance of the cornea, chemical burns, severe pain, tearing, ulcerations, significantly impaired vision or complete loss of vision.

Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea.

Additional Health Effects:

Prolonged or repeated exposure may cause target organ effects:

Immunological effects: Signs/symptoms may include alterations in the number of circulating immune cells, allergic skin and/or respiratory reaction, and changes in immune function.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Inhalation- Dust/Mist(4 hr)		No data available; calculated ATE >12.5 mg/l
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
Aluminium hydroxide	Dermal		LD50 estimated to be > 5,000 mg/kg
Aluminium hydroxide	Ingestion	Rat	LD50 > 5,000 mg/kg
reaction product: bisphenol-A-(epichlorhydrin)	Dermal	Rat	LD50 > 1,600 mg/kg
reaction product: bisphenol-A-(epichlorhydrin)	Ingestion	Rat	LD50 > 1,000 mg/kg
Phenol-formaldehyde polymer, glycidyl ether	Dermal	Rabbit	LD50 > 6,000 mg/kg
Phenol-formaldehyde polymer, glycidyl ether	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 1.7 mg/l
Phenol-formaldehyde polymer, glycidyl ether	Ingestion	Rat	LD50 > 4,000 mg/kg
2,2-bis(acryloyloxymethyl)butyl acrylate	Dermal	Rabbit	LD50 5,170 mg/kg
2,2-bis(acryloyloxymethyl)butyl acrylate	Ingestion	Rat	LD50 > 5,000 mg/kg
Siloxanes and Silicones, di-Me, reaction products with silica	Dermal	Rabbit	LD50 > 5,000 mg/kg
Siloxanes and Silicones, di-Me, reaction products with silica	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 0.691 mg/l
Siloxanes and Silicones, di-Me, reaction products with silica	Ingestion	Rat	LD50 > 5,110 mg/kg
Silicon dioxide	Dermal	Rabbit	LD50 > 5,000 mg/kg
Silicon dioxide	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 0.691 mg/l
Silicon dioxide	Ingestion	Rat	LD50 > 5,110 mg/kg
acrylic acid	Dermal	Rabbit	LD50 > 2,000 mg/kg
acrylic acid	Inhalation- Dust/Mist (4 hours)	Rat	LC50 3.8 mg/l
acrylic acid	Ingestion	Rat	LD50 1,250 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Aluminium hydroxide	Rabbit	No significant irritation
reaction product: bisphenol-A-(epichlorhydrin)	Rabbit	Mild irritant
Phenol-formaldehyde polymer, glycidyl ether	Rabbit	Minimal irritation
2,2-bis(acryloyloxymethyl)butyl acrylate	Rabbit	Mild irritant
Siloxanes and Silicones, di-Me, reaction products with silica	Rabbit	No significant irritation
Silicon dioxide	Rabbit	No significant irritation
acrylic acid	Rabbit	Corrosive

Serious Eye Damage/Irritation

Serious Eye Damage/II I Itation		
Name	Species	Value
Aluminium hydroxide	Rabbit	No significant irritation
reaction product: bisphenol-A-(epichlorhydrin)	Rabbit	Moderate irritant
Phenol-formaldehyde polymer, glycidyl ether	Rabbit	Mild irritant
2,2-bis(acryloyloxymethyl)butyl acrylate	Rabbit	Corrosive
Siloxanes and Silicones, di-Me, reaction products with silica	Rabbit	No significant irritation
Silicon dioxide	Rabbit	No significant irritation
acrylic acid	Rabbit	Corrosive

Skin Sensitisation

Name	Species	Value
Aluminium hydroxide	Guinea	Not classified
	pig	
reaction product: bisphenol-A-(epichlorhydrin)	Human	Sensitising
	and	
	animal	
Phenol-formaldehyde polymer, glycidyl ether	Human	Sensitising
	and	
	animal	
2,2-bis(acryloyloxymethyl)butyl acrylate	Guinea	Sensitising
	pig	
Siloxanes and Silicones, di-Me, reaction products with silica	Human	Not classified
	and	
	animal	
Silicon dioxide	Human	Not classified
	and	
	animal	
acrylic acid	Guinea	Not classified
	pig	

Respiratory Sensitisation

Name	Species	Value
reaction product: bisphenol-A-(epichlorhydrin)	Human	Not classified

Germ Cell Mutagenicity

Name	Route	Value
reaction product: bisphenol-A-(epichlorhydrin)	In vivo	Not mutagenic
reaction product: bisphenol-A-(epichlorhydrin)	In Vitro	Some positive data exist, but the data are not sufficient for classification
Phenol-formaldehyde polymer, glycidyl ether	In Vitro	Some positive data exist, but the data are not sufficient for classification
2,2-bis(acryloyloxymethyl)butyl acrylate	In vivo	Not mutagenic
2,2-bis(acryloyloxymethyl)butyl acrylate	In Vitro	Some positive data exist, but the data are not sufficient for classification
Siloxanes and Silicones, di-Me, reaction products with silica	In Vitro	Not mutagenic
Silicon dioxide	In Vitro	Not mutagenic
acrylic acid	In vivo	Not mutagenic
acrylic acid	In Vitro	Some positive data exist, but the data are not sufficient for classification

Carcinogenicity

Name	Route	Species	Value
Aluminium hydroxide	Not specified.	Multiple animal species	Not carcinogenic
reaction product: bisphenol-A-(epichlorhydrin)	Dermal	Mouse	Some positive data exist, but the data are not sufficient for classification
2,2-bis(acryloyloxymethyl)butyl acrylate	Dermal	Mouse	Some positive data exist, but the data are not sufficient for classification
Siloxanes and Silicones, di-Me, reaction products with silica	Not specified.	Mouse	Some positive data exist, but the data are not sufficient for classification
Silicon dioxide	Not specified.	Mouse	Some positive data exist, but the data are not sufficient for classification
acrylic acid	Ingestion	Rat	Not carcinogenic
acrylic acid	Dermal	Mouse	Some positive data exist, but the data are not sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
Aluminium hydroxide	Ingestion	Not classified for development	Rat	NOAEL 768 mg/kg/day	during organogenesis
reaction product: bisphenol-A- (epichlorhydrin)	Ingestion	Not classified for female reproduction	Rat	NOAEL 750 mg/kg/day	2 generation
reaction product: bisphenol-A- (epichlorhydrin)	Ingestion	Not classified for male reproduction	Rat	NOAEL 750 mg/kg/day	2 generation
reaction product: bisphenol-A- (epichlorhydrin)	Dermal	Not classified for development	Rabbit	NOAEL 300 mg/kg/day	during organogenesis
reaction product: bisphenol-A- (epichlorhydrin)	Ingestion	Not classified for development	Rat	NOAEL 750 mg/kg/day	2 generation
Siloxanes and Silicones, di-Me, reaction products with silica	Ingestion	Not classified for female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
Siloxanes and Silicones, di-Me, reaction products with silica	Ingestion	Not classified for male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
Siloxanes and Silicones, di-Me, reaction products with silica	Ingestion	Not classified for development	Rat	NOAEL 1,350 mg/kg/day	during organogenesis
Silicon dioxide	Ingestion	Not classified for female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
Silicon dioxide	Ingestion	Not classified for male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
Silicon dioxide	Ingestion	Not classified for development	Rat	NOAEL 1,350 mg/kg/day	during organogenesis
acrylic acid	Ingestion	Not classified for female reproduction	Rat	NOAEL 460 mg/kg/day	2 generation
acrylic acid	Ingestion	Not classified for male reproduction	Rat	NOAEL 460 mg/kg/day	2 generation
acrylic acid	Inhalation	Not classified for development	Rat	NOAEL 1.1 mg/l	during organogenesis
acrylic acid	Ingestion	Not classified for development	Rat	NOAEL 53 mg/kg/day	2 generation

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
acrylic acid	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
reaction product: bisphenol-A- (epichlorhydrin)	Dermal	liver	Not classified	Rat	NOAEL 1,000 mg/kg/day	2 years
reaction product: bisphenol-A- (epichlorhydrin)	Dermal	nervous system	Not classified	Rat	NOAEL 1,000 mg/kg/day	13 weeks
reaction product: bisphenol-A- (epichlorhydrin)	Ingestion	auditory system heart endocrine system hematopoietic system liver eyes kidney and/or bladder	Not classified	Rat	NOAEL 1,000 mg/kg/day	28 days
2,2- bis(acryloyloxymethyl)but yl acrylate	Dermal	immune system	May cause damage to organs though prolonged or repeated exposure	Mouse	NOAEL 50 mg/kg/day	16 days
2,2- bis(acryloyloxymethyl)but	Dermal	heart hematopoietic	Not classified	Mouse	NOAEL 12 mg/kg/day	28 weeks

yl acrylate		system kidney and/or bladder respiratory system				
Siloxanes and Silicones, di-Me, reaction products with silica	Inhalation	respiratory system silicosis	Not classified	Human	NOAEL Not available	occupational exposure
Silicon dioxide	Inhalation	respiratory system silicosis	Not classified	Human	NOAEL Not available	occupational exposure

Aspiration Hazard

For the component/components, either no data is currently available or the data is not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 12 are based on UN GHS calculation rules and classifications derived from 3M assessments.

12.1. Toxicity

No product test data available.

Material	CAS#	Organism	Type	Exposure	Test endpoint	Test result
reaction product: bisphenol-A- (epichlorhydrin)	25068-38-6	Rainbow trout	Estimated	96 hours	LC50	2 mg/l
reaction product: bisphenol-A- (epichlorhydrin)	25068-38-6	Water flea	Estimated	48 hours	LC50	1.8 mg/l
reaction product: bisphenol-A- (epichlorhydrin)	25068-38-6	Green Algae	Experimental	72 hours	EC50	>11 mg/l
reaction product: bisphenol-A- (epichlorhydrin)	25068-38-6	Green Algae	Experimental	72 hours	NOEC	4.2 mg/l
reaction product: bisphenol-A- (epichlorhydrin)	25068-38-6	Water flea	Experimental	21 days	NOEC	0.3 mg/l
Aluminium hydroxide	21645-51-2	Fish other	Experimental	96 hours	No tox obs at lmt of water sol	>100 mg/l
Aluminium hydroxide	21645-51-2	Green Algae	Experimental	72 hours	No tox obs at lmt of water sol	>100 mg/l
Aluminium hydroxide	21645-51-2	Water flea	Experimental	48 hours	No tox obs at lmt of water sol	>100 mg/l
Aluminium hydroxide	21645-51-2	Green Algae	Experimental	72 hours	No tox obs at lmt of water sol	100 mg/l
Phenol-formaldehyde polymer, glycidyl ether	28064-14-4	Golden Orfe	Experimental	96 hours	LC50	5.7 mg/l
Phenol-formaldehyde polymer, glycidyl ether	28064-14-4	Water flea	Experimental	48 hours	EC50	3.5 mg/l
2,2- bis(acryloyloxymethyl) butyl acrylate	15625-89-5	Green algae	Experimental	96 hours	EC50	14.5 mg/l
2,2- bis(acryloyloxymethyl) butyl acrylate	15625-89-5	Water flea	Experimental	48 hours	LC50	19.9 mg/l
2,2- bis(acryloyloxymethyl) butyl acrylate	15625-89-5	Zebra Fish	Experimental	96 hours	LC50	0.87 mg/l

2,2- bis(acryloyloxymethyl) butyl acrylate	15625-89-5	Green algae	Experimental	72 hours	Effect Concentration 10%	1.9 mg/l
Siloxanes and Silicones, di-Me, reaction products with silica	67762-90-7		Data not available or insufficient for classification			
Silicon dioxide	7631-86-9		Data not available or insufficient for classification			
acrylic acid	79-10-7	Green algae	Experimental	72 hours	EC50	0.13 mg/l
acrylic acid	79-10-7	Rainbow trout	Experimental	96 hours	LC50	27 mg/l
acrylic acid	79-10-7	Water flea	Experimental	48 hours	EC50	95 mg/l
acrylic acid	79-10-7	Green algae	Experimental	72 hours	Effect Concentration 10%	0.03 mg/l
acrylic acid	79-10-7	Water flea	Experimental	21 days	NOEC	3.8 mg/l

12.2. Persistence and degradability

Material	CAS Nbr	Test type	Duration	Study Type	Test result	Protocol
reaction product: bisphenol- A-(epichlorhydrin)	25068-38-6	Experimental Hydrolysis		Hydrolytic half-life	117 hours (t 1/2)	Other methods
reaction product: bisphenol- A-(epichlorhydrin)	25068-38-6	Experimental Biodegradation	28 days	BOD	5 %BOD/COD	OECD 301F - Manometric respirometry
Aluminium hydroxide	21645-51-2	Data not availbl- insufficient			N/A	
Phenol-formaldehyde polymer, glycidyl ether	28064-14-4	Laboratory Biodegradation	28 days	CO2 evolution	10-16 %CO2 evolution/THC O2 evolution (does not pass 10-day window)	OECD 301B - Modified sturm or CO2
2,2- bis(acryloyloxymethyl)butyl acrylate	15625-89-5	Experimental Biodegradation	28 days	CO2 evolution	82-90 %CO2 evolution/THC O2 evolution	OECD 301B - Modified sturm or CO2
Siloxanes and Silicones, di- Me, reaction products with silica	67762-90-7	Data not availbl- insufficient			N/A	
Silicon dioxide	7631-86-9	Data not availbl- insufficient			N/A	
acrylic acid	79-10-7	Estimated Photolysis		Photolytic half-life (in air)	3.2 days (t 1/2)	Other methods
acrylic acid	79-10-7	Experimental Biodegradation	28 days	BOD	81 % BOD/ThBOD	OECD 301D - Closed bottle test

12.3 : Bioaccumulative potential

Material	Cas No.	Test type	Duration	Study Type	Test result	Protocol
reaction product: bisphenol-A- (epichlorhydrin)	25068-38-6	Experimental Bioconcentration		Log Kow	3.242	Other methods
Aluminium hydroxide	21645-51-2	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Phenol-formaldehyde polymer, glycidyl ether	28064-14-4	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
2,2- bis(acryloyloxymethyl)buty l acrylate	15625-89-5	Estimated Bioconcentration		Log Kow	4.35	Other methods
Siloxanes and Silicones, di- Me, reaction products with	67762-90-7	Data not available or insufficient for	N/A	N/A	N/A	N/A

silica		classification				
Silicon dioxide	7631-86-9	Data not available	N/A	N/A	N/A	N/A
		or insufficient for				
		classification				
acrylic acid	79-10-7	Experimental		Log Kow	0.46	Other methods
		Bioconcentration				

12.4. Mobility in soil

Please contact manufacturer for more details

12.5. Results of the PBT and vPvB assessment

This material does not contain any substances that are assessed to be a PBT or vPvB

12.6. Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of waste product in a permitted industrial waste facility. As a disposal alternative, incinerate in a permitted waste incineration facility. Proper destruction may require the use of additional fuel during incineration processes. Combustion products will include halogen acid (HCl/HF/HBr). Facility must be capable of handling halogenated materials. Empty drums/barrels/containers used for transporting and handling hazardous chemicals (chemical substances/mixtures/preparations classified as Hazardous as per applicable regulations) shall be considered, stored, treated & disposed of as hazardous wastes unless otherwise defined by applicable waste regulations. Consult with the respective regulating authorities to determine the available treatment and disposal facilities.

The coding of a waste stream is based on the application of the product by the consumer. Since this is out of the control of 3M, no waste code(s) for products after use will be provided. Please refer to the European Waste Code (EWC - 2000/532/EC and amendments) to assign the correct waste code to your waste stream. Ensure national and/or regional regulations are complied with and always use a licensed waste contractor.

EU waste code (product as sold)

08 04 09* Waste adhesives and sealants containing organic solvents or other dangerous substances

SECTION 14: Transportation information

IMDG: UN3077; Environmentally Hazardous Substance, Solid, N.O.S (Solid Epoxy Resin); 9; III; Marine Pollutant: Solid Epoxy Resin; EMS: FA, SF.

Exemption: For vessels containing a net quantity of 5 l or a net mass of 5 kg or less per single or inner packaging , special provision 375 (ADR), exemption per 2.10.2.7 (IMDG) or special provision A197 (IATA) may be applied, if applicable ADR: UN3077; Environmentally Hazardous Substance, Solid, N.O.S (Solid Epoxy Resin); 9; III; (-); M7.

IATA: UN3077; Environmentally Hazardous Substance, Solid, N.O.S (Solid Epoxy Resin); 9; III.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Carcinogenicity
Ingredient
امنده مناسمه

IngredientCAS NbrClassificationRegulationacrylic acid79-10-7Gr. 3: Not classifiableInternationa

International Agency for Research on Cancer

.....

Scotch-Weld(tm) Epoxy Structural Adhesive 7271 B/A: Part B

Silicon dioxide	7631-86-9	Gr. 3: Not classifiable	International Agency
			for Research on Cancer
2,2-bis(acryloyloxymethyl)butyl acrylate	15625-89-5	Grp. 2B: Possible human	International Agency
		carc.	for Research on Cancer

15.2. Chemical Safety Assessment

A chemical safety assessment has not been carried out for this mixture. Chemical safety assessments for the contained substances may have been carried out by the registrants of the substances in accordance with Regulation (EC) No 1907/2006, as amended.

SECTION 16: Other information

List of relevant H statements

H226	Flammable liquid and vapour.
H302	Harmful if swallowed.
H312	Harmful in contact with skin.
H314	Causes severe skin burns and eye damage.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H319	Causes serious eye irritation.
H332	Harmful if inhaled.
H335	May cause respiratory irritation.
H400	Very toxic to aquatic life.
H410	Very toxic to aquatic life with long lasting effects.
H411	Toxic to aquatic life with long lasting effects.

Revision information:

Industrial Use of Adhesives: Section 16: Annex information was added.

Professional Use of Adhesives: Section 16: Annex information was added.

Section 1: Emergency telephone information was modified.

CLP: Ingredient table information was modified.

Section 3: Composition/Information of ingredients table information was modified.

Section 8: 8.2. Exposure controls information information was added.

Section 8: 8.2.3. Environmental exposure controls information information was added.

Section 8: DNEL table row information was added.

Section 8: Occupational exposure limit table information was modified.

Section 8: PNEC table row information was added.

Section 09: Color information was added.

Section 09: Odor information was added.

Sections 3 and 9: Odour, colour, grade information information was deleted.

Section 10: Hazardous decomposition or by-products table information was modified.

Section 11: Acute Toxicity table information was modified.

Section 11: Carcinogenicity Table information was modified.

Section 11: Germ Cell Mutagenicity Table information was modified.

Section 11: Reproductive Toxicity Table information was modified.

Section 11: Respiratory Sensitization Table information was modified.

Section 11: Serious Eye Damage/Irritation Table information was modified.

Section 11: Skin Corrosion/Irritation Table information was modified.

Section 11: Skin Sensitization Table information was modified.

Section 11: Target Organs - Repeated Table information was modified.

Section 11: Target Organs - Single Table information was modified.

- Section 12: Component ecotoxicity information information was modified.
- Section 12: Persistence and Degradability information information was modified.
- Section 12:Bioccumulative potential information information was modified.
- Section 14: Transportation classification information was modified.
- Section 15: Carcinogenicity information information was modified.
- Section 15: Regulations Inventories information was deleted.
- Annex: Prediction of exposure statement information was added.
- Sectio 16: UK disclaimer information was deleted.

Annex

1. Title			
Substance identification	acrylic acid; EC No. 201-177-9; CAS Nbr 79-10-7;		
Exposure Scenario Name	Industrial Use of Adhesives		
Lifecycle Stage	Use at industrial sites		
Contributing activities	PROC 13 -Treatment of articles by dipping and pouring ERC 06c -Use of monomer in polymerisation processes at industrial site (inclusion or not into/onto article)		
Processes, tasks and activities covered	Application of product.		
2. Operational conditions and risk mana	gement measures		
Operating Conditions	Physical state:Liquid. General operating conditions: Duration of use: > 4 hours task; Indoor use with Local Exhaust Ventilation; Outdoor use;		
Risk management measures	Under the operational conditions described above the following risk management measures apply: General risk management measures: Human health: Protective Gloves - Chemical resistant. Refer to Section 8 of the SDS for specific glove material.; Safety glasses with side shields.; Environmental: None needed;		
Waste management measures	No use-specific waste management measures are required for this product. Refer to Section 13 of main SDS for disposal instructions:		
3. Prediction of exposure			
Prediction of exposure	Human and environmental exposures are not expected to exceed the DNELs and PNECs when the identified risk management measures are adopted.		

1. Title		
Substance identification	acrylic acid;	
	EC No. 201-177-9;	
	CAS Nbr 79-10-7;	
Exposure Scenario Name	Professional Use of Adhesives	
Lifecycle Stage	Widespread use by professional workers	
Contributing activities	PROC 13 -Treatment of articles by dipping and pouring	
	ERC 08c -Widespread use leading to inclusion into/onto article (indoor)	
Processes, tasks and activities covered Application of product.		
2. Operational conditions and risk management measures		
Operating Conditions	Physical state:Liquid.	

	General operating conditions: Duration of exposure per day at workplace [for one worker]: > 4 hours task; Indoor use with Local Exhaust Ventilation; Outdoor use; Task: Application of product without local exhaust ventilation; Indoor use; Duration of use: <= 1 hours per task;
Risk management measures	Under the operational conditions described above the following risk management measures apply: General risk management measures: Human health: Protective Gloves - Chemical resistant. Refer to Section 8 of the SDS for specific glove material.; Safety glasses with side shields.; Environmental: None needed;
Waste management measures	No use-specific waste management measures are required for this product. Refer to Section 13 of main SDS for disposal instructions:
3. Prediction of exposure	
Prediction of exposure	Human and environmental exposures are not expected to exceed the DNELs and PNECs when the identified risk management measures are adopted.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications. In addition, this SDS is being provided to convey health and safety information. If you are the importer of record of this product into the European Union, you are responsible for all regulatory requirements, including, but not limited to, product registrations/notifications, substance volume tracking, and potential substance registration.

3M Ireland MSDSs are available at www.3M.com

Safety Data Sheet

Copyright, 2024, 3M Company All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document group: 30-5003-6 **Version number:** 3.00

Revision date: 03/10/2024 **Supersedes date:** 14/07/2023

This Safety Data Sheet has been prepared in accordance with the REACH Regulation (EC) 1907/2006 and its modifications.

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Scotch-Weld(tm) Epoxy Structural Adhesive 7271 B/A: Part A

1.2. Relevant identified uses of the substance or mixture and uses advised against

Identified uses

Product

1.3. Details of the supplier of the safety data sheet

Address: 3M Ireland Limited, The Iveagh Building, The Park, Carrickmines, Dublin 18.

Telephone: +353 1 280 3555 E Mail: tox.uk@mmm.com Website: www.3M.com

1.4. Emergency telephone number

Emergency medical information: 8am-10pm (seven days) contact National Poisons Information Centre, Beaumont Hospital, Dublin 9 DOV2NO, Ireland. Telephone Number: +353 (0)1 809 2166

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture

CLP REGULATION (EC) No 1272/2008

The health and environmental classifications of this material have been derived using the calculation method, except in cases where test data are available or the physical form impacts classification. Classification(s) based on test data or physical form are noted below, if applicable.

A similar mixture has been tested for eye damage/irritation and the test results are reflected in the assigned classification.

A similar mixture has been tested for skin corrosion/irritation and the test results are reflected in the assigned classification.

CLASSIFICATION:

Skin Corrosion/Irritation, Category 2 - Skin Irrit. 2; H315

Serious Eye Damage/Eye Irritation, Category 2 - Eye Irrit. 2; H319

Skin Sensitization, Category 1 - Skin Sens. 1; H317

Specific Target Organ Toxicity-Repeated Exposure, Category 2 - STOT RE 2; H373

Hazardous to the Aquatic Environment (Chronic), Category 2 - Aquatic Chronic 2; H411

For full text of H phrases, see Section 16.

2.2. Label elements

CLP REGULATION (EC) No 1272/2008

SIGNAL WORD

WARNING.

Symbols

GHS07 (Exclamation mark) |GHS08 (Health Hazard) |GHS09 (Environment) |

Pictograms

Ingredients:

Ingredient	CAS Nbr	EC No.	% by Wt
Fatty acids, C18-unsaturated, dimers, oligomeric reaction products with tall-oil fatty acids and triethylenetetramine	68082-29-1	500-191-5	35 - 80
2-Propenentrile, polymer with 1,3-butadiene, 1-cyano-1-methyl-4-oxo-4-[[2-(1-piperazinyl)ethyl]amino]butyl-terminated	68683-29-4		3 - 25
3,6-diazaoctanethylenediamin	112-24-3	203-950-6	1 - 10
2-piperazin-1-ylethylamine	140-31-8	205-411-0	0.1 - 2

HAZARD STATEMENTS:

H315 Causes skin irritation.
 H319 Causes serious eye irritation.
 H317 May cause an allergic skin reaction.

H373 May cause damage to organs through prolonged or repeated exposure: respiratory system.

H411 Toxic to aquatic life with long lasting effects.

PRECAUTIONARY STATEMENTS

Prevention:

P260A Do not breathe vapours.

P273 Avoid release to the environment.

P280E Wear protective gloves.

Response:

P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if

present and easy to do. Continue rinsing.

P333 + P313 If skin irritation or rash occurs: Get medical advice/attention.

P391 Collect spillage.

For containers not exceeding 125 ml the following Hazard and Precautionary statements may be used:

<=125 ml Hazard statements

H317 May cause an allergic skin reaction.

<=125 ml Precautionary statements

Prevention:

P260A Do not breathe vapours. P280E Wear protective gloves.

Response:

P333 + P313 If skin irritation or rash occurs: Get medical advice/attention.

8% of the mixture consists of components of unknown acute dermal toxicity.

2.3. Other hazards

Persons previously sensitised to amines may develop a cross-sensitisation reaction to certain other amines. This material does not contain any substances that are assessed to be a PBT or vPvB

SECTION 3: Composition/information on ingredients

3.1. Substances

Not applicable

3.2. Mixtures

Ingredient	Identifier(s)	%	Classification according to Regulation (EC) No. 1272/2008 [CLP]
Fatty acids, C18-unsaturated, dimers, oligomeric reaction products with tall-oil fatty acids and triethylenetetramine	(CAS-No.) 68082-29-1 (EC-No.) 500-191-5	35 - 80	Skin Irrit. 2, H315 Eye Dam. 1, H318 Skin Sens. 1A, H317 Aquatic Chronic 2, H411
Aluminium hydroxide	(CAS-No.) 21645-51-2 (EC-No.) 244-492-7 (REACH-No.) 01- 2119529246-39	5 - 55	Substance with a national occupational exposure limit
3,3'-Ethylenedioxybis(propylamine)	(CAS-No.) 2997-01-5 (EC-No.) 221-067-4 (REACH-No.) 01- 2120766197-44	3 - 25	Skin Corr. 1B, H314
2-Propenenitrile, polymer with 1,3-butadiene, 1-cyano-1-methyl-4-oxo-4-[[2-(1-piperazinyl)ethyl]amino]butyl-terminated	(CAS-No.) 68683-29-4	3 - 25	Skin Irrit. 2, H315 Skin Sens. 1A, H317
Synthetic amorphous silica, fumed, crystalline-free	(CAS-No.) 112945-52-5 (REACH-No.) 01- 2119379499-16	1 - 10	Substance with a national occupational exposure limit
3,6-diazaoctanethylenediamin	(CAS-No.) 112-24-3 (EC-No.) 203-950-6	1 - 10	Acute Tox. 4, H312 Skin Corr. 1B, H314 Skin Sens. 1, H317 Aquatic Chronic 3, H412 Acute Tox. 4, H302 Eye Dam. 1, H318
Oxide glass chemicals	(CAS-No.) 65997-17-3 (EC-No.) 266-046-0	0.5 - 5	Substance with a national occupational exposure limit

2,4,6-tris(dimethylaminomethyl)phenol	(CAS-No.) 90-72-2 (EC-No.) 202-013-9 (REACH-No.) 01- 2119560597-27	0.5 - 5	Acute Tox. 4, H302 Skin Corr. 1C, H314 Eye Dam. 1, H318
2-piperazin-1-ylethylamine	(CAS-No.) 140-31-8 (EC-No.) 205-411-0		Acute Tox. 3, H311 Acute Tox. 4, H302 Skin Corr. 1B, H314 Skin Sens. 1B, H317 Aquatic Chronic 3, H412 Repr. 2, H361d STOT RE 1, H372
Silicon dioxide	(CAS-No.) 7631-86-9 (EC-No.) 231-545-4	0.1 - 2	Substance with a national occupational exposure limit

Please see section 16 for the full text of any H statements referred to in this section

For information on ingredient occupational exposure limits or PBT or vPvB status, see sections 8 and 12 of this SDS

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

Skin contact

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

Eve contact

Immediately flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. Get medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

The most important symptoms and effects based on the CLP classification include:

Irritation to the skin (localized redness, swelling, itching, and dryness). Allergic skin reaction (redness, swelling, blistering, and itching). Serious irritation to the eyes (significant redness, swelling, pain, tearing, and impaired vision). Target organ effects. See Section 11 for additional details.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

5.3. Advice for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapours, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of collected material as soon as possible.

6.4. Reference to other sections

Refer to Section 8 and Section 13 for more information

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Decontaminate work surfaces frequently to avoid exposure by contact. Do not handle until all safety precautions have been read and understood. Do not breathe dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Avoid contact with oxidising agents (eg. chlorine, chromic acid etc.) Use personal protective equipment (eg. gloves, respirators...) as required.

7.2. Conditions for safe storage including any incompatibilities

Keep container tightly closed. Store away from heat. Store away from acids. Store away from strong bases. Store away from oxidising agents.

7.3. Specific end use(s)

See information in Section 7.1 and 7.2 for handling and storage recommendations. See Section 8 for exposure controls and personal protection recommendations.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient Silicon dioxide	CAS Nbr 112945-52-5	Agency Ireland OELs	Limit type TWA(Total inhalable dust)(8 hours):6 mg/m3;TWA(as respirable dust)(8 hours):2.4 mg/m3	Additional comments
DUST, INERT OR NUISANCE	21645-51-2	Ireland OELs	TWA(Total inhalable dust)(8 hours):10 mg/m3;TWA(as respirable dust)(8 hours):4	

Scotch-Weld(tm) Epoxy Structural Adhesive 7271 B/A: Part A

mg/m3

fiber/cc)

Mineral wool, with the exception 65997-17-3 Ireland OELs

of those specified elsewhere in

this Annex

Oxide glass chemicals

65997-17-3 Manufacturer

determined

TWA(as non-fibrous,

respirable)(8 hours):3 mg/m3;TWA(as non-fibrous,

TWA(8 hours):5 mg/m3(2)

inhalable fraction)(8 hours):10

mg/m3

Silicon dioxide 7631-86-9 Ireland OELs TWA(Total inhalable dust)(8

hours):6 mg/m3;TWA(as respirable dust)(8 hours):2.4

mg/m3

Ireland OELs: Ireland. OELs TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

Biological limit values

No biological limit values exist for any of the components listed in Section 3 of this safety data sheet.

Recommended monitoring procedures: Information on recommended monitoring procedures can be obtained from Indust. Inspect./Ministry (IE)

8.2. Exposure controls

8.2.1. Engineering controls

Provide ventilated enclosure for heat curing. Curing enclosures must be exhausted to outdoors or to a suitable emission control device. Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapours/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Safety glasses with side shields.

Indirect vented goggles.

Applicable Norms/Standards

Use eye protection conforming to EN 166

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing. Note: Nitrile gloves may be worn over polymer laminate gloves to improve dexterity. Gloves made from the following material(s) are recommended:

MaterialThickness (mm)Breakthrough TimePolymer laminateNo data availableNo data available

Applicable Norms/Standards
Use gloves tested to EN 374

If this product is used in a manner that presents a higher potential for exposure (eg. spraying, high splash potential etc.), then use of protective coveralls may be necessary. Select and use body protection to prevent contact based on the results of an exposure assessment. The following protective clothing material(s) are recommended: Apron - polymer laminate

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapours and particulates Half facepiece or full facepiece supplied-air respirator

For questions about suitability for a specific application, consult with your respirator manufacturer.

Applicable Norms/Standards

Use a respirator conforming to EN 140 or EN 136

Use a respirator conforming to EN 140 or EN 136: filter types A & P

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

inioi mation on basic physical and chemical prop	et des
Physical state	Solid.
Specific Physical Form:	Paste
Colour	Blue
Odor	Characteristic Odour
Odour threshold	No data available.
Melting point/freezing point	Not applicable.
Boiling point/boiling range	No data available.
Flammability	Not applicable.
Flammable Limits(LEL)	Not applicable.
Flammable Limits(UEL)	Not applicable.
Flash point	No data available.
Autoignition temperature	No data available.
Decomposition temperature	No data available.
pH	substance/mixture is non-soluble (in water)
Kinematic Viscosity	120,192 mm ² /sec
Water solubility	No data available.
Solubility- non-water	No data available.
Partition coefficient: n-octanol/water	No data available.
Vapour pressure	Not applicable.
Density	1 - 1.05 g/cm3 [@ 25 °C]
Relative density	1.04 [Ref Std:WATER=1]
Relative Vapour Density	Not applicable.
Particle Characteristics	Not applicable.

9.2. Other information

9.2.2 Other safety characteristics

EU Volatile Organic Compounds Evaporation rate

No data available. Not applicable.

Molecular weight No data available.

Percent volatile No data available.

SECTION 10: Stability and reactivity

10.1 Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

10.2 Chemical stability

Stable.

10.3 Possibility of hazardous reactions

Hazardous polymerisation will not occur.

10.4 Conditions to avoid

Heat.

Heat is generated during cure. Do not cure a mass larger than 50 grams in a confined space to prevent a premature exothermic reaction with production of intense heat and smoke.

10.5 Incompatible materials

Alkali and alkaline earth metals.

Strong acids.

Strong bases.

Strong oxidising agents.

10.6 Hazardous decomposition products

1 1	
Substance	<u>Condition</u>
Aldehydes.	Oxidation, heat or reaction
Hydrocarbons.	Oxidation, heat or reaction
Carbon monoxide	Oxidation, heat or reaction
Carbon dioxide.	Oxidation, heat or reaction
Ammonia	Oxidation, heat or reaction
Oxides of nitrogen.	Oxidation, heat or reaction

SECTION 11: Toxicological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 11 are based on UN GHS calculation rules and classifications derived from internal hazard assessments.

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

Respiratory tract irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain. May cause additional health effects (see below).

Skin contact

Skin Irritation: Signs/symptoms may include localised redness, swelling, itching, dryness, cracking, blistering, and pain. Allergic skin reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching.

Eve contact

Severe eye irritation: Signs/symptoms may include significant redness, swelling, pain, tearing, cloudy appearance of the cornea, and impaired vision.

Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea. May cause additional health effects (see below).

Additional Health Effects:

Prolonged or repeated exposure may cause target organ effects:

Respiratory effects: Signs/symptoms may include cough, shortness of breath, chest tightness, wheezing, increased heart rate, bluish coloured skin (cyanosis), sputum production, changes in lung function tests, and respiratory failure.

Reproductive/Developmental Toxicity:

Contains a chemical or chemicals which can cause birth defects or other reproductive harm.

Additional information:

Persons previously sensitised to amines may develop a cross-sensitisation reaction to certain other amines.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000 mg/kg
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
Fatty acids, C18-unsaturated, dimers, oligomeric reaction products with tall-oil fatty acids and triethylenetetramine	Dermal	Rat	LD50 > 2,000 mg/kg
Fatty acids, C18-unsaturated, dimers, oligomeric reaction products with tall-oil fatty acids and triethylenetetramine	Ingestion	Rat	LD50 > 5,000 mg/kg
Aluminium hydroxide	Dermal		LD50 estimated to be > 5,000 mg/kg
Aluminium hydroxide	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 2.3 mg/l
Aluminium hydroxide	Ingestion	Rat	LD50 > 5,000 mg/kg
2-Propenenitrile, polymer with 1,3-butadiene, 1-cyano-1-methyl- 4-oxo-4-[[2-(1-piperazinyl)ethyl]amino]butyl-terminated	Dermal	Rabbit	LD50 > 3,000 mg/kg
2-Propenenitrile, polymer with 1,3-butadiene, 1-cyano-1-methyl- 4-oxo-4-[[2-(1-piperazinyl)ethyl]amino]butyl-terminated	Ingestion	Rat	LD50 > 15,300 mg/kg
Synthetic amorphous silica, fumed, crystalline-free	Dermal	Rabbit	LD50 > 5,000 mg/kg
Synthetic amorphous silica, fumed, crystalline-free	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 0.691 mg/l
Synthetic amorphous silica, fumed, crystalline-free	Ingestion	Rat	LD50 > 5,110 mg/kg
3,3'-Ethylenedioxybis(propylamine)	Ingestion	Rat	LD50 2,773 mg/kg
3,6-diazaoctanethylenediamin	Dermal	Rat	LD50 1,465 mg/kg
3,6-diazaoctanethylenediamin	Ingestion	Rat	LD50 1,591 mg/kg
Oxide glass chemicals	Dermal		LD50 estimated to be > 5,000 mg/kg
Oxide glass chemicals	Ingestion		LD50 estimated to be 2,000 - 5,000 mg/kg
2,4,6-tris(dimethylaminomethyl)phenol	Dermal	Rat	LD50 1,280 mg/kg
2,4,6-tris(dimethylaminomethyl)phenol	Ingestion	Rat	LD50 1,000 mg/kg
Silicon dioxide	Dermal	Rabbit	LD50 > 5,000 mg/kg
Silicon dioxide	Inhalation- Dust/Mist	Rat	LC50 > 0.691 mg/l
OT: I' 'I	(4 hours)	l D /	I D50 > 5 110 //
Silicon dioxide	Ingestion	Rat	LD50 > 5,110 mg/kg

Page: 9 of 19

2-piperazin-1-ylethylamine	Dermal	Rabbit	LD50 865 mg/kg
2-piperazin-1-ylethylamine	Ingestion	Rat	LD50 1,470 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Overall product	In vitro	Irritant
	data	
Fatty acids, C18-unsaturated, dimers, oligomeric reaction products with tall-oil	In vitro	Irritant
fatty acids and triethylenetetramine	data	
Aluminium hydroxide	Rabbit	No significant irritation
2-Propenenitrile, polymer with 1,3-butadiene, 1-cyano-1-methyl-4-oxo-4-[[2-(1-	Rabbit	Irritant
piperazinyl)ethyl]amino]butyl-terminated		
Synthetic amorphous silica, fumed, crystalline-free	Rabbit	No significant irritation
3,3'-Ethylenedioxybis(propylamine)	In vitro	Corrosive
	data	
3,6-diazaoctanethylenediamin	Rabbit	Corrosive
Oxide glass chemicals	Professio	No significant irritation
	nal	
	judgemen	
	t	
2,4,6-tris(dimethylaminomethyl)phenol	Rabbit	Corrosive
Silicon dioxide	Rabbit	No significant irritation
2-piperazin-1-ylethylamine	Rabbit	Corrosive

Serious Eye Damage/Irritation

Name	Species	Value
Overall product	In vitro	Severe irritant
	data	
Fatty acids, C18-unsaturated, dimers, oligomeric reaction products with tall-oil	Rabbit	Corrosive
fatty acids and triethylenetetramine		
Aluminium hydroxide	Rabbit	No significant irritation
2-Propenenitrile, polymer with 1,3-butadiene, 1-cyano-1-methyl-4-oxo-4-[[2-(1-	Rabbit	Mild irritant
piperazinyl)ethyl]amino]butyl-terminated		
Synthetic amorphous silica, fumed, crystalline-free	Rabbit	No significant irritation
3,3'-Ethylenedioxybis(propylamine)	similar	Corrosive
	health	
	hazards	
3,6-diazaoctanethylenediamin	Rabbit	Corrosive
Oxide glass chemicals	Professio	No significant irritation
	nal	
	judgemen	
	t	
2,4,6-tris(dimethylaminomethyl)phenol	Rabbit	Corrosive
Silicon dioxide	Rabbit	No significant irritation
2-piperazin-1-ylethylamine	Rabbit	Corrosive

Skin Sensitisation

Name	Species	Value
Fatty acids, C18-unsaturated, dimers, oligomeric reaction products with tall-oil fatty acids and triethylenetetramine	Mouse	Sensitising
Aluminium hydroxide	Guinea pig	Not classified
2-Propenenitrile, polymer with 1,3-butadiene, 1-cyano-1-methyl-4-oxo-4-[[2-(1-piperazinyl)ethyl]amino]butyl-terminated	Guinea pig	Sensitising
Synthetic amorphous silica, fumed, crystalline-free	Human and animal	Not classified
3,6-diazaoctanethylenediamin	Guinea pig	Sensitising

2,4,6-tris(dimethylaminomethyl)phenol	Guinea	Not classified
	pig	
Silicon dioxide	Human	Not classified
	and	
	animal	
2-piperazin-1-ylethylamine	Guinea	Sensitising
	pig	

Respiratory Sensitisation

For the component/components, either no data is currently available or the data is not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
Synthetic amorphous silica, fumed, crystalline-free	In Vitro	Not mutagenic
3,3'-Ethylenedioxybis(propylamine)	In Vitro	Not mutagenic
3,6-diazaoctanethylenediamin	In vivo	Not mutagenic
3,6-diazaoctanethylenediamin	In Vitro	Some positive data exist, but the data are not sufficient for classification
Oxide glass chemicals	In Vitro	Some positive data exist, but the data are not sufficient for classification
2,4,6-tris(dimethylaminomethyl)phenol	In Vitro	Not mutagenic
Silicon dioxide	In Vitro	Not mutagenic
2-piperazin-1-ylethylamine	In vivo	Not mutagenic
2-piperazin-1-ylethylamine	In Vitro	Some positive data exist, but the data are not sufficient for classification

Carcinogenicity

Name	Route	Species	Value
Aluminium hydroxide	Not	Multiple	Not carcinogenic
	specified.	animal	
		species	
Synthetic amorphous silica, fumed, crystalline-free	Not	Mouse	Some positive data exist, but the data are not
	specified.		sufficient for classification
3,6-diazaoctanethylenediamin	Dermal	Mouse	Not carcinogenic
Oxide glass chemicals	Inhalation	Multiple	Some positive data exist, but the data are not
		animal	sufficient for classification
		species	
Silicon dioxide	Not	Mouse	Some positive data exist, but the data are not
	specified.		sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
Aluminium hydroxide	Ingestion	Not classified for development	Rat	NOAEL 768 mg/kg/day	during organogenesis
Synthetic amorphous silica, fumed, crystalline-free	Ingestion	Not classified for female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
Synthetic amorphous silica, fumed, crystalline-free	Ingestion	Not classified for male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
Synthetic amorphous silica, fumed, crystalline-free	Ingestion	Not classified for development	Rat	NOAEL 1,350 mg/kg/day	during organogenesis
3,6-diazaoctanethylenediamin	Dermal	Not classified for development	Rabbit	NOAEL 125 mg/kg/day	during organogenesis
3,6-diazaoctanethylenediamin	Ingestion	Not classified for development	Rat	NOAEL 750 mg/kg/day	during organogenesis
2,4,6-tris(dimethylaminomethyl)phenol	Ingestion	Not classified for male reproduction	Rat	NOAEL 150 mg/kg/day	2 generation
2,4,6-tris(dimethylaminomethyl)phenol	Ingestion	Not classified for female reproduction	Rat	NOAEL 50 mg/kg/day	2 generation
2,4,6-tris(dimethylaminomethyl)phenol	Ingestion	Not classified for development	Rabbit	NOAEL 15	during

				mg/kg/day	gestation
Silicon dioxide	Ingestion	Not classified for female reproduction	Rat	NOAEL 509	1 generation
				mg/kg/day	
Silicon dioxide	Ingestion	Not classified for male reproduction	Rat	NOAEL 497	1 generation
				mg/kg/day	
Silicon dioxide	Ingestion	Not classified for development	Rat	NOAEL	during
				1,350	organogenesis
				mg/kg/day	
2-piperazin-1-ylethylamine	Ingestion	Not classified for female reproduction	Rat	NOAEL 598	premating &
				mg/kg/day	during
					gestation
2-piperazin-1-ylethylamine	Ingestion	Not classified for male reproduction	Rat	NOAEL 409	32 days
		_		mg/kg/day	-
2-piperazin-1-ylethylamine	Ingestion	Toxic to development	Rabbit	NOAEL 75	during
	_	_		mg/kg/day	gestation

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
2-Propenenitrile, polymer with 1,3-butadiene, 1-cyano-1-methyl-4-oxo-4-[[2-(1-piperazinyl)ethyl]amino]bu tyl-terminated	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL not available	
3,3'- Ethylenedioxybis(propyla mine)	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL not available	
3,6- diazaoctanethylenediamin	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	
2,4,6- tris(dimethylaminomethyl) phenol	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	
2-piperazin-1-ylethylamine	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification		NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Synthetic amorphous silica, fumed, crystalline-free	Inhalation	respiratory system silicosis	Not classified	Human	NOAEL Not available	occupational exposure
Oxide glass chemicals	Inhalation	respiratory system	Not classified	Human	NOAEL not available	occupational exposure
2,4,6- tris(dimethylaminomethyl) phenol	Dermal	skin	Not classified	Rat	NOAEL 25 mg/kg/day	4 weeks
2,4,6- tris(dimethylaminomethyl) phenol	Dermal	liver nervous system auditory system hematopoietic system eyes	Not classified	Rat	NOAEL 125 mg/kg/day	4 weeks
2,4,6- tris(dimethylaminomethyl) phenol	Ingestion	heart endocrine system hematopoietic system liver muscles nervous system kidney and/or bladder respiratory system vascular system auditory system	Not classified	Rat	NOAEL 150 mg/kg/day	90 days

		skin gastrointestinal tract bone, teeth, nails, and/or hair immune system eyes				
Silicon dioxide	Inhalation	respiratory system silicosis	Not classified	Human	NOAEL Not available	occupational exposure
2-piperazin-1-ylethylamine	Dermal	skin	Not classified	Rat	NOAEL 100 mg/kg/day	29 days
2-piperazin-1-ylethylamine	Dermal	hematopoietic system nervous system kidney and/or bladder	Not classified	Rat	NOAEL 1,000 mg/kg/day	29 days
2-piperazin-1-ylethylamine	Inhalation	respiratory system	Causes damage to organs through prolonged or repeated exposure	Rat	NOAEL 0.2 mg/m³	13 weeks
2-piperazin-1-ylethylamine	Inhalation	hematopoietic system eyes kidney and/or bladder	Not classified	Rat	NOAEL 53.8 mg/m³	13 weeks
2-piperazin-1-ylethylamine	Ingestion	heart endocrine system hematopoietic system liver nervous system kidney and/or bladder	Not classified	Rat	NOAEL 598 mg/kg/day	28 days

Aspiration Hazard

For the component/components, either no data is currently available or the data is not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

11.2. Information on other hazards

This material does not contain any substances that are assessed to be an endocrine disruptor for human health.

SECTION 12: Ecological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 12 are based on UN GHS calculation rules and classifications derived from 3M assessments.

12.1. Toxicity

No product test data available.

Material	CAS#	Organism	Type	Exposure	Test endpoint	Test result
Fatty acids, C18- unsaturated, dimers, oligomeric reaction products with tall-oil fatty acids and triethylenetetramine	68082-29-1	Activated sludge	Experimental	3 hours	EC10	130 mg/l
Fatty acids, C18- unsaturated, dimers, oligomeric reaction products with tall-oil fatty acids and triethylenetetramine	68082-29-1	Green algae	Experimental	72 hours	EC50	4.34 mg/l

Fatty acids, C18- unsaturated, dimers,	68082-29-1	Water flea	Experimental	48 hours	EC50	7.07 mg/l
oligomeric reaction						
products with tall-oil						
fatty acids and						
triethylenetetramine						
Fatty acids, C18-	68082-29-1	Zebra Fish	Experimental	96 hours	LC50	7.07 mg/l
unsaturated, dimers,						· · · · · · · · · · · · · · · · · · ·
oligomeric reaction						
products with tall-oil						
fatty acids and						
triethylenetetramine						
Fatty acids, C18-	68082-29-1	Green algae	Experimental	72 hours	NOEC	0.5 mg/l
unsaturated, dimers,	00002-29-1	Oreen argae	Experimental	/2 Hours	NOEC	0.5 mg/1
oligomeric reaction						
products with tall-oil						
fatty acids and						
triethylenetetramine						
Aluminium hydroxide	21645-51-2	Fish	Experimental	96 hours	No tox obs at lmt	>100 mg/l
					of water sol	
Aluminium hydroxide	21645-51-2	Green algae	Experimental	72 hours	No tox obs at lmt	>100 mg/l
_			_		of water sol	
Aluminium hydroxide	21645-51-2	Water flea	Experimental	48 hours	No tox obs at lmt	>100 mg/l
i indiminani ny di omae	210.00012	, and the	Z.iperiiieii.ui	10 110 415	of water sol	100 mg 1
Aluminium hydroxide	21645-51-2	Green algae	Experimental	72 hours	No tox obs at lmt	100 mg/l
Aluminum nydroxide	21043-31-2	Green argae	Experimental	/2 Hours	of water sol	100 mg/1
2.21	2007.01.5	0 1	D : 1	72.1		. 101 //
3,3'-	2997-01-5	Green algae	Experimental	72 hours	ErC50	>101 mg/l
Ethylenedioxybis(propy						
lamine)						
3,3'-	2997-01-5	Water flea	Experimental	48 hours	EC50	>100 mg/l
Ethylenedioxybis(propy						
lamine)						
3,3'-	2997-01-5	Green algae	Experimental	72 hours	EC10	33 mg/l
Ethylenedioxybis(propy			1			
lamine)						
2-Propenenitrile,	68683-29-4	N/A	Data not available	N/A	N/A	N/A
polymer with 1,3-	000003 29 1	11/11	or insufficient for	14/21	1,471	1771
butadiene, 1-cyano-1-			classification			
methyl-4-oxo-4-[[2-(1-			Classification			
piperazinyl)ethyl]amino						
]butyl-terminated						
	112045 52 5	C 1	A 1	70.1	E 050	. 172 1 //
Synthetic amorphous	112945-52-5	Green algae	Analogous	72 hours	ErC50	>173.1 mg/l
silica, fumed,			Compound			
crystalline-free						
Synthetic amorphous	112945-52-5	Sediment organism	Analogous	96 hours	EC50	8,500 mg/kg (Dry
silica, fumed,			Compound			Weight)
crystalline-free						
Synthetic amorphous	112945-52-5	Water flea	Analogous	24 hours	EL50	>10,000 mg/l
silica, fumed,			Compound			_
crystalline-free			1 -			
Synthetic amorphous	112945-52-5	Zebra Fish	Analogous	96 hours	LL50	>10,000 mg/l
silica, fumed,			Compound			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
crystalline-free						
Synthetic amorphous	112945-52-5	Green algae	Analogous	72 hours	NOEC	173.1 mg/l
	114743-34-3	Orecii aigae		/2 Hours	NOEC	1 / 3.1 IIIg/1
silica, fumed,			Compound			
crystalline-free	112045 52 5	XX	1	21.1	NODEC	60 //
Synthetic amorphous	112945-52-5	Water flea	Analogous	21 days	NOEC	68 mg/l
silica, fumed,			Compound			
crystalline-free						
Synthetic amorphous	112945-52-5	Activated sludge	Experimental	3 hours	EC50	>1,000 mg/l
silica, fumed,						
crystalline-free						
3,6-	112-24-3	Green algae	Experimental	72 hours	EC50	27.4 mg/l
diazaoctanethylenediam			r			" "
in						
3,6-	112-24-3	Guppy	Experimental	96 hours	LC50	570 mg/l
		Guppy	Laperinicinal	70 HOUIS	LCJU	J'O'mg/1
diazanetanathulanadiam					1	
diazaoctanethylenediam in						

Page: 14 of 19

112-24-3	Water flea				
	1	Experimental	48 hours	EC50	37.4 mg/l
112.24.2			70.1	MODE	0.460
112-24-3	Green algae	Experimental	72 hours	NOEC	0.468 mg/l
		<u> </u>			
112-24-3	Water flea	Experimental	21 days	NOEC	2.86 mg/l
55997-17-3	Green algae	Experimental	72 hours	EC50	>1,000 mg/l
55997-17-3	Water flea	Experimental	72 hours	EC50	>1,000 mg/l
55997-17-3	Zebra Fish	Experimental	96 hours	LC50	>1,000 mg/l
55997-17-3	Green algae	Experimental	72 hours	NOEC	>=1,000 mg/l
90-72-2	N/A	Experimental	96 hours	LC50	718 mg/l
20.72.2			0.61	Y 050	100 "
90-72-2	Common Carp	Experimental	96 hours	LC50	>100 mg/l
	ļ			7.050	1.5
90-72-2	Green algae	Experimental	72 hours	EC50	46.7 mg/l
					ļ.,,,
90-72-2	Water flea	Experimental	48 hours	EC50	>100 mg/l
90-72-2	Green algae	Experimental	72 hours	NOEC	6.44 mg/l
140-31-8	Bacteria	Experimental	17 hours	EC10	100 mg/l
140-31-8	Golden Orfe	Experimental	96 hours	LC50	368 mg/l
		'			
140-31-8	Green algae	Experimental	72 hours	EC50	>1,000 mg/l
		I P			,
140-31-8	Water flea	Experimental	48 hours	EC50	58 mg/l
140-31-8	Green algae	Experimental	72 hours	NOEC	31 mg/l
			10110		
7631-86-9	N/A	Data not available	N/A	N/A	N/A
001 00 /	- W 4 2	or insufficient for	- 11 - 1		
	55997-17-3 55997-17-3 60-72-2 60-72-2 60-72-2 60-72-2 60-72-2 40-31-8	12-24-3 Water flea 15997-17-3 Green algae 15997-17-3 Zebra Fish 15997-17-3 Green algae 15997-17-3 Green algae 10-72-2 N/A 10-72-2 Common Carp 10-72-2 Green algae 10-72-2 Green algae 10-72-2 Green algae 10-72-2 Green algae 10-72-1 Green algae 10-72-2 Green algae 10-72-2 Green algae 10-72-3 Green algae 10-72-4 Green algae 10-72-5 Green algae 10-72-6 Green algae 10-72-7 Green algae 10-72-8 Green algae 10-72-9 Green algae 10-72-9 Green algae 10-72-1 Green algae 10-72-1 Green algae	Water flea Experimental 12-24-3 Water flea Experimental 15997-17-3 Water flea Experimental 15997-17-3 Zebra Fish Experimental 15997-17-3 Green algae Experimental 15997-17-3 Green algae Experimental 10-72-2 N/A Experimental 10-72-2 Common Carp Experimental 10-72-2 Green algae Experimental 10-72-2 Water flea Experimental 10-72-2 Green algae Experimental 10-72-2 Green algae Experimental 10-72-3 Green algae Experimental 10-72-4 Green algae Experimental 10-72-5 Green algae Experimental 10-72-6 Green algae Experimental 10-72-7 Green algae Experimental 10-72-8 Green algae Experimental 10-72-9 Green algae Experimental 10-72-9 Green algae Experimental 10-72-1 Green algae Experimental 10-72-2 Green algae Experimental	12-24-3 Water flea Experimental 21 days 15997-17-3 Green algae Experimental 72 hours 15997-17-3 Water flea Experimental 72 hours 15997-17-3 Zebra Fish Experimental 96 hours 15997-17-3 Green algae Experimental 72 hours 16997-17-3 Green algae Experimental 96 hours 16997-17-3 Green algae Experimental 96 hours 16997-17-2 Common Carp Experimental 96 hours 16997-17-2 Green algae Experimental 72 hours 16997-17-2 Green algae Experimental 72 hours 16997-17-3 Green algae Experimental 72 hours 16997-17-3 Green algae Experimental 72 hours 16997-17-3 Green algae Experimental 17 hours 17997-17-3 Green algae Experimental 179 hours 17997-17-3 Green algae Experimental 179 hours 17997-17-3 Green algae Experimental 179 hours 18997-17-3 Green algae Experimental 179 hours 19997-17-3 Green 19	12-24-3 Water flea Experimental 21 days NOEC 15997-17-3 Green algae Experimental 72 hours EC50 15997-17-3 Water flea Experimental 72 hours EC50 15997-17-3 Zebra Fish Experimental 96 hours LC50 15997-17-3 Green algae Experimental 72 hours NOEC 10-72-2 N/A Experimental 96 hours LC50 10-72-2 Common Carp Experimental 96 hours LC50 10-72-2 Green algae Experimental 72 hours EC50 10-72-2 Green algae Experimental 48 hours EC50 10-72-2 Green algae Experimental 72 hours NOEC 10-72-2 Green algae Experimental 48 hours EC50 10-72-2 Green algae Experimental 72 hours NOEC 10-72-2 Green algae Experimental 72 hours NOEC 10-73-8 Golden Orfe Experimental 75 hours EC50 10-74-8 Green algae Experimental 76 hours LC50 10-75-8 Green algae Experimental 77 hours EC50 10-75-9 hours Hours EC50 10-75-9 hours Hours EC50 10-75-9 hours Hours EC50 10-75-9 hours H

12.2. Persistence and degradability

Material	CAS Nbr	Test type	Duration	Study Type	Test result	Protocol
Fatty acids, C18- unsaturated, dimers, oligomeric reaction products with tall-oil fatty acids and triethylenetetramine	68082-29-1	Analogous Compound Biodegradation	28 days	CO2 evolution	≤8 %CO2 evolution/THC O2 evolution	OECD 301B - Modified sturm or CO2
Aluminium hydroxide	21645-51-2	Data not availbl- insufficient	N/A	N/A	N/A	N/A
3,3'- Ethylenedioxybis(propylami ne)	2997-01-5	Experimental Biodegradation	28 days	CO2 evolution	4 %CO2 evolution/THC O2 evolution	OECD 301B - Modified sturm or CO2
3,3'- Ethylenedioxybis(propylami ne)	2997-01-5	Experimental Aquatic Inherent Biodegrad.	28 days	Dissolv. Organic Carbon Deplet	6 %removal of DOC	OECD 302B Zahn- Wellens/EVPA
2-Propenenitrile, polymer with 1,3-butadiene, 1-cyano-1-methyl-4-oxo-4-[[2-(1-	68683-29-4	Data not availbl- insufficient	N/A	N/A	N/A	N/A

Page: 15 of 19

piperazinyl)ethyl]amino]but yl-terminated						
Synthetic amorphous silica, fumed, crystalline-free	112945-52-5	Data not availbl- insufficient	N/A	N/A	N/A	N/A
3,6- diazaoctanethylenediamin	112-24-3	Experimental Biodegradation	20 days	BOD	0 %BOD/ThO D	OECD 301D - Closed bottle test
Oxide glass chemicals	65997-17-3	Data not availbl- insufficient	N/A	N/A	N/A	N/A
2,4,6- tris(dimethylaminomethyl)p henol	90-72-2	Experimental Biodegradation	28 days	BOD	4 %BOD/ThO D	OECD 301D - Closed bottle test
2-piperazin-1-ylethylamine	140-31-8	Experimental Biodegradation	28 days	BOD	0 %BOD/ThO D	OECD 301C - MITI test (I)
Silicon dioxide	7631-86-9	Data not availbl- insufficient	N/A	N/A	N/A	N/A

12.3: Bioaccumulative potential

Material	Cas No.	Test type	Duration	Study Type	Test result	Protocol
Fatty acids, C18- unsaturated, dimers, oligomeric reaction products with tall-oil fatty acids and triethylenetetramine	68082-29-1	Experimental Bioconcentration		Log Kow	≤3.55	OECD 117 log Kow HPLC method
Aluminium hydroxide	21645-51-2	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
3,3'- Ethylenedioxybis(propylam ine)	2997-01-5	Experimental Bioconcentration		Log Kow	-1.24	EC A.8 Partition Coefficient
2-Propenenitrile, polymer with 1,3-butadiene, 1-cyano-1-methyl-4-oxo-4-[[2-(1-piperazinyl)ethyl]amino]bu tyl-terminated	68683-29-4	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Synthetic amorphous silica, fumed, crystalline-free	112945-52-5	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
3,6- diazaoctanethylenediamin	112-24-3	Experimental BCF - Fish	42 days	Bioaccumulation factor	<5.0	OECD305-Bioconcentration
Oxide glass chemicals	65997-17-3	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
2,4,6- tris(dimethylaminomethyl) phenol	90-72-2	Experimental Bioconcentration		Log Kow	-0.66	830.7550 Part.Coef Shake Flask
2-piperazin-1-ylethylamine	140-31-8	Experimental Bioconcentration		Log Kow	0.3	
Silicon dioxide	7631-86-9	Data not available or insufficient for classification	N/A	N/A	N/A	N/A

12.4. Mobility in soil

Material	Cas No.	Test type	Study Type	Test result	Protocol
3,3'-	2997-01-5	Modeled Mobility	Koc	1 l/kg	ACD/Labs ChemSketch™
Ethylenedioxybis(propylam		in Soil			
ine)					

12.5. Results of the PBT and vPvB assessment

This material does not contain any substances that are assessed to be a PBT or vPvB

12.6. Endocrine disrupting properties

This material does not contain any substances that are assessed to be an endocrine disruptor for environmental effects

12.7. Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of waste product in a permitted industrial waste facility. As a disposal alternative, incinerate in a permitted waste incineration facility. Proper destruction may require the use of additional fuel during incineration processes. Empty drums/barrels/containers used for transporting and handling hazardous chemicals (chemical substances/mixtures/preparations classified as Hazardous as per applicable regulations) shall be considered, stored, treated & disposed of as hazardous wastes unless otherwise defined by applicable waste regulations. Consult with the respective regulating authorities to determine the available treatment and disposal facilities.

The coding of a waste stream is based on the application of the product by the consumer. Since this is out of the control of 3M, no waste code(s) for products after use will be provided. Please refer to the European Waste Code (EWC - 2000/532/EC and amendments) to assign the correct waste code to your waste stream. Ensure national and/or regional regulations are complied with and always use a licensed waste contractor.

EU waste code (product as sold)

08 04 09* Waste adhesives and sealants containing organic solvents or other dangerous substances

SECTION 14: Transportation information

	Ground Transport (ADR)	Air Transport (IATA)	Marine Transport (IMDG)
14.1 UN number or ID number	UN3077	UN3077	UN3077
14.2 UN proper shipping	ENVIRONMENTALLY	ENVIRONMENTALLY	ENVIRONMENTALLY
name	HAZARDOUS	HAZARDOUS SUBSTANCE,	HAZARDOUS
	SUBSTANCE, SOLID,	SOLID,	SUBSTANCE, SOLID,
	N.O.S.(POLYAMIDOAMIN	N.O.S.(POLYAMIDOAMINE)	N.O.S.(POLYAMIDOAMIN
	E)		E)
14.3 Transport hazard	9	9	9
class(es)			
14.4 Packing group	III	III	III
14.5 Environmental hazards	Environmentally Hazardous	Not applicable	Marine Pollutant
14.6 Special precautions for	Please refer to the other	Please refer to the other	Please refer to the other
user	sections of the SDS for	sections of the SDS for further	sections of the SDS for
	further information.	information.	further information.

14.7 Marine Transport in bulk according to IMO instruments	No data available.	No data available.	No data available.
Control Temperature	No data available.	No data available.	No data available.
Emergency Temperature	No data available.	No data available.	No data available.
ADR Classification Code	M7	Not applicable.	Not applicable.
IMDG Segregation Code	Not applicable.	Not applicable.	NONE

Please contact the address or phone number listed on the first page of the SDS for additional information on the transport/shipment of the material by rail (RID) or inland waterways (ADN).

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Carcinogenicity

<u>Ingredient</u>	CAS Nbr	<u>Classification</u>	Regulation
Silicon dioxide	7631-86-9	Gr. 3: Not classifiable	International Agency
			for Research on Cancer

Global inventory status

Contact 3M for more information.

DIRECTIVE 2012/18/EU

Seveso hazard categories, Annex 1, Part 1

Hazard Categories	Qualifying quantity (tonnes) for the application of		
	Lower-tier requirements	Upper-tier requirements	
E2 Hazardous to the Aquatic	200	500	
environment			

Seveso named dangerous substances, Annex 1, Part 2 None

Regulation (EU) No 649/2012

No chemicals listed

15.2. Chemical Safety Assessment

A chemical safety assessment has not been carried out for this mixture. Chemical safety assessments for the contained substances may have been carried out by the registrants of the substances in accordance with Regulation (EC) No 1907/2006, as amended.

SECTION 16: Other information	
--------------------------------------	--

List of relevant H statements

H302	Harmful if swallowed.
H311	Toxic in contact with skin.
H312	Harmful in contact with skin.
H314	Causes severe skin burns and eye damage.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H318	Causes serious eye damage.
H319	Causes serious eye irritation.
H361d	Suspected of damaging the unborn child.
H372	Causes damage to organs through prolonged or repeated exposure.
H373	May cause damage to organs through prolonged or repeated exposure: respiratory system.
H411	Toxic to aquatic life with long lasting effects.
H412	Harmful to aquatic life with long lasting effects.

Revision information:

Section 1: Product use information information was modified.

Section 2: <125ml Precautionary - Prevention information was modified.

CLP: Ingredient table information was modified.

Label: CLP Classification information was modified.

Label: CLP Precautionary - Prevention information was modified.

Section 3: Composition/Information of ingredients table information was modified.

Section 8: Eye/face protection information information was modified.

Section 8: Occupational exposure limit table information was modified.

Section 8: Respiratory protection - recommended respirators information information was modified.

Section 9: Flammability (solid, gas) information information was deleted.

Section 09: Flammability information information was added.

Section 09: Particle Characteristics N/A information was added.

Section 11: Acute Toxicity table information was modified.

Section 11: Carcinogenicity Table information was modified.

Section 11: Germ Cell Mutagenicity Table information was modified.

Section 11: Health Effects - Skin information information was modified.

Section 11: Reproductive Toxicity Table information was modified.

Section 11: Target Organs - Repeated Table information was modified.

Section 11: Target Organs - Single Table information was modified.

Section 15: Seveso Hazard Category Text information was added.

Two-column table displaying the unique list of H Codes and statements (std phrases) for all components of the given material. information was modified.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications. In addition, this SDS is being provided to convey health and safety information. If you are the importer of record of this product into the European Union, you are responsible for all regulatory requirements, including, but not limited to, product registrations/notifications, substance volume tracking, and potential substance registration.

3M Ireland MSDSs are available at www.3M.com