

安全データシート

Copyright, 2024, 3M Company. All right reserved. 本情報は、3M社の製品を適切にご使用頂くために作成したものです。複製および/またはダウンロードをする場合には、以下の条件をお守り下さい。(1)3M社から書面による事前承認を得ることなく情報を変更したり、一部を抜粋して使用しないで下さい。(2)本情報を営利目的で転売または配布をしないで下さい。

 SDS番号
 32-8843-8
 版
 8.00

 発行日
 2024/09/12
 前発行日
 2024/01/23

この安全データシートはJIS Z7253:2019に対応しています。

1. 化学品及び会社情報

1.1. 化学品の名称

3M™ コンパウンド ハード・2-L 5985, 5985M, 35985

3M ストックナンバー

JC-2200-2326-4

7100116204

1.2. 推奨用途及び使用上の制限

推奨用涂

自動車塗装研磨用

1.3. 会社情報

供給者スリーエム ジャパン株式会社所在地本社 東京都品川区北品川6-7-29担当部門オート・アフターマーケット 製品事業部技術部

電話番号 042-779-2185

2. 危険有害性の要約

GHS分類

皮膚腐食性/刺激性: 区分2

皮膚感作性: 区分1

水生環境有害性 短期 (急性) : 区分 3 水生環境有害性 長期 (慢性) : 区分 3

GHSラベル要素

注意喚起語

警告

シンボル

感嘆符

ピクトグラム

危険有害性情報

H315 皮膚刺激

H317 アレルギー性皮膚反応を起こすおそれ

H412 長期継続的影響により水生生物に有害

注意書き

安全対策

P261 粉じん/煙/ガス/ミスト/蒸気/スプレーの吸入を避けること。

P280E保護手袋を着用すること。P264取扱後はよく洗うこと。

P272 汚染された作業衣は作業場から出さないこと。

P273 環境への放出を避けること。

応急措置

P302 + P352 皮膚に付着した場合: 多量の水と石けん(鹸)で洗うこと。

P333 + P313 皮膚刺激又は発しん(疹)が生じた場合: 医師の診断/手当てを受けるこ

ی ط

P362 + P364 汚染された衣類を脱ぐこと。再利用する場合は洗うこと。

廃棄

P501 内容物/容器を国際,国,都道府県,市町村の規則に従って廃棄すること。

その他の有害性

製品の粘度により、誤えん有害性の区分は適用しない。

3. 組成及び成分情報

この製品は混合物です。

成分	CAS番号	重量%
水	7732-18-5	50 - 75
酸化アルミニウム	1344-28-1	5 - 15
水素化重質石油ナフサ	64742-48-9	11
石油系溶剤	64742-14-9	9. 5
グリセリン	56-81-5	< 5
ヒマシ油	8001-79-4	< 3
ホワイトミネラルオイル (石油)	8042-47-5	1.9

ノナン	111-84-2	< 1
トリエタノールアミン	102-71-6	0. 28
2-メチル-4-イソチアゾリン-3-オン	2682-20-4	< 0.1
5-クロロ-2-メチル-4-イソチアゾリン-	26172-55-4	< 0.1
3-オン		

4. 応急措置

応急措置

吸入した場合

新鮮な空気の環境に移動させる。気分がすぐれない場合は医療機関を受診する。

皮膚に付着した場合

直ちに多量の水で15分間以上洗浄する。汚染された衣類を再使用する場合には洗濯すること。症状が続く場合は医療機関を 受診する。

眼に入った場合

直ちに多量の水で洗浄する。コンタクトレンズを着用していて容易に外せる場合は外すこと。その後も洗浄を続けること。 症状が続く場合には医療機関を受診する。

飲み込んだ場合

口をゆすぐ。気分が悪い時は医療機関を受診する。

予想できる急性症状及び遅発性症状の最も重要な徴候症状

アレルギー性皮膚反応(発赤、腫脹、水疱形成及びかゆみ)。

応急措置を要する者の保護に必要な注意事項

適用しない。

5. 火災時の措置

消火剤

火災の場合: 消火するために水あるいは泡消火薬剤などの、通常の燃焼物質用の消火薬剤を使用すること。

使ってはならない消火剤

情報なし。

特有の危険有害性

本製品では予想されない。

有害な分解物または副生成物

物質	<u>条件</u>
炭化水素類	燃燒中
一酸化炭素	燃焼中
二酸化炭素	燃焼中
刺激性蒸気あるいはガス	燃焼中

消火作業者の保護

ヘルメット、自給式の陽圧ないし加圧式呼吸装置、バンカーコート及びズボン、腕、腰及び脚の周りのバンド、

顔面マスク、及び頭部の露出部分の保護カバーを含む完全保護衣服を着用する。

6. 漏出時の措置

人体に対する注意事項、保護具及び緊急措置

区域から退避させること。 新鮮な空気でその場所を換気する。 大量に漏洩した場合、あるいは狭小な場所で漏洩した場合は、安全衛生手順にしたがって、蒸気の拡散、排出のための強制換気を行う。 物理的有害性、健康有害性、呼吸保護、換気、個人防護については本SDSの他の項目を参照。

環境に対する注意事項

環境への放出を避けること。 大量の場合には、下水設備や水施設に流入すのを防止する為に、排水溝にカバー し、土手をつくる。

封じ込め及び浄化の方法及び機材

漏洩を止める。 ベントナイト、バーミキュライトあるいは市販の無機吸収剤を用い、漏洩物の周囲から内側に向けて覆う。漏洩箇所が乾燥するまで十分に吸収剤を混ぜ合わせる。 吸収剤を加えても物理的危険性や健康および環境影響に関する有害性を有することに留意する。 漏洩した物質を出来る限り多く回収する。 密閉容器に収納する。 有資格者・専門家が選択した適切な溶剤を使用して残留物を清掃する。新鮮な空気に換気する。溶剤のラベルとSDSを参照し、安全な取り扱い方法に従う。 容器を密封する。 回収した物質は、国内外の法令や規則にしたがって、できるだけ早く廃棄する。

7. 取扱い及び保管上の注意

取扱い

工業用又は業務用。消費者用用途への販売、使用禁止。 粉じん/煙/ガス/ミスト/蒸気/スプレーの吸入を避けること。 眼、皮膚、衣類につけないこと。 この製品を使用するときに、飲食又は喫煙をしないこと。 取扱後はよく洗うこと。 汚染された作業衣は作業場から出さないこと。 環境への放出を避けること。 汚染された衣類を再使用する場合には洗濯をすること。 本製品の使用により可燃性粉塵が生じることがある。 本製品から発生する粉塵は、粉塵の濃度、点火源などの存在により爆発を引き起こすことがある。製品表面に粉塵が溜まったまま放置しないようにする。

保管

熱から離して保管する。酸から離して保管する。

8. ばく露防止及び保護措置

管理項目

許容濃度及び管理濃度

セクション3に表示されている成分名が、以下の表に見当たらない場合は、当該成分についての適切な作業時の 許容濃度または管理濃度がないことを示している。

成分	CAS番号	政府機関	許容濃度または管理濃度	備考
トリエタノールアミン	102-71-6	ACGIH	TWA: 5mg/m3	
トリエタノールアミン	102-71-6	ISHL(濃度基準値)	TWA(8時間): 1mg/m3	25℃1気圧空気中
ノナン	111-84-2	ACGIH	TWA:200 ppm	
ノナン	111-84-2	ISHL(濃度基準	TWA(8時間):200 ppm	25℃1気圧空気中

		値)		
n-ノナン、全ての異性体	111-84-2	JSOH OELs	TWA(8 h):1050 mg/m3(200 ppm)	
酸化アルミニウム	1344-28-1	JSOH OELs	TWA(総粉じんとして)(8時間):2 mg/m3;TWA(吸入性粉じんとして)(8時間):0.5 mg/m3	
不溶性アルミニウム、化合物	1344-28-1	ACGIH	TWA(吸入性分画): 1mg/m3	A4:ヒトに対する発が ん性物質として分類で きない物質
不溶性又は難溶性粒子状物質 で他に特段の指定がないもの, 吸入粒子	1344-28-1	ACGIH	TWA(吸入粒子):10 mg/m3	
不溶性又は難溶性粒子状物質 で他に特段の指定がないもの, 吸入性粒子	1344-28-1	ACGIH	TWA(吸入性粒子):3 mg/m3	
2-メチル-4-イソチアゾリン- 3-オン	2682-20-4	JSOH OELs	限界値は未設定	皮膚感作性のおそれ。
クラス1及び2以外の有機及 び無機粉塵、総粉塵	56-81-5	JSOH OELs	TWA(総粉じんとして) (8 時間):8 mg/m3; TWA(吸入 性粉じんとして) (8時 間):2 mg/m3	
不活性あるいは有害なダスト	56-81-5	JSOH OELs	TWA(総粉じん)(8時間):4mg/m3;TWA(吸入性粉じん)(8時間):1mg/m3	
鉱物油、高精製油	8042-47-5	ACGIH	TWA(吸入性分画):5 mg/m3	A4:ヒトに対する発が ん性物質として分類で きない物質
鉱物油、高精製油	8042-47-5	JSOH OELs	TWA (ミストとして) (8時間):3 mg/m3	
オイルミスト、ミネラル	8042-47-5	JSOH OELs	TWA (ミストとして) (8時間):3 mg/m3	

ACGIH: American Conference of Governmental Industrial Hygienists

AIHA: American Industrial Hygiene Association

ISHL: 労働安全衛生法作業環境評価基準

ISHL (濃度基準値) : 労働安全衛生法厚生労働大臣が定める濃度の基準

JSOH OELs: 日本産業衛生学会許容濃度

TWA:時間加重平均値 STEL:短時間ばく露限界値

ppm: 百万分率

mg/m3:ミリグラム/立方メートル

CEIL: 天井値

ばく露防止策

設備対策

切削、研削、研磨、旋削時に適切な局排換気を行う。 空気中の有害物質をそれぞれの許容濃度以下に制御し、粉じん、フューム、ガス、ミスト、スプレーをコントロールするためにも、一般的な希釈換気あるいは局排換気を行う。換気が適切に実施できない場合は、呼吸保護具を使用する。 粉塵発生源付近での暴露抑制及び作業区域への粉塵の流入防止のために製造現場に局所排気を準備・提供する。 排気ダクト、集塵機、処理装置など、作業環境へのダスト流入防止システムがあることを確認する。

保護具

眼の保護具

特に必要としない。

皮膚及び身体の保護具

ばく露評価に準じた皮膚接触を防止するために、関連した法令で認められた保護手袋・保護衣を選択・使用する。 注:保護性を高めるために樹脂ラミネートされた手袋にニトリルゴム製の手袋を重ねてもよい。 推奨される手袋の材質:樹脂ラミネート。

スプレーや、ハネの多い作業など、ばく露の可能性が高い場合には、つなぎ服などの保護衣を使用する。 ばく 露評価に基づき、適切な保護具を着用する。保護衣の材質として次のものを推奨する。 ポリマーラミネート製工 プロン

呼吸用保護具

ばく露評価によって保護マスクが必要と判断される場合には、適切なものを使用する。ばく露評価結果に基づいて以下のものから保護マスクを選択する:

半面形もしくは全面形のオイルミスト対応ろ過材付き有機ガス用防毒マスク

特殊な利用に際して、マスクの適合性に疑問があれば、保護マスクのメーカーに相談する。

9. 物理的及び化学的性質

基本的な物理・化学的性質

はないない 一口上は1工首	
外観	液体
物理的状態:	エマルジョン
色	白色
臭い	鉱油
臭いの閾値	データはない。
рН	8.1 - 8.5
融点・凝固点	データはない。
沸点,初留点及び沸騰範囲	100 °C
引火点	94 °C
蒸発速度	データはない。
引火性	適用しない
燃焼点(下限)	データはない。
燃焼点(上限)	データはない。
蒸気圧	データはない。
蒸気密度/相対蒸気密度	データはない。
密度	1.01 g/cm3
比重	1.01 [参照基準:水=1]
溶解度	データはない。
溶解度(水以外)	完全に溶解する
n-オクタノール/水分配係数	データはない。

発火点	データはない。
分解温度	データはない。
動粘度	13,861 mm2/sec
揮発性有機化合物	データはない。
揮発分	データはない。
水と規制除外の溶剤を除いた揮発性有機化合物	データはない。
(JIS-GHSの要求項目ではない)	

ナノパーティクル

この製品はナノパーティクルを含有しない。

粒子特性	適用しない

10. 安定性及び反応性

反応性

この物質は、特殊条件下では薬品と反応する可能性がある。このセクションの他の項目を参照する。

化学的安定性

安定。

危険有害反応の可能性

有害な重合反応は起こらない。

避けるべき条件

熱。

沸点以上の温度

混触危険物質

強酸

危険有害な分解物

物質

条件

知見はない。

セクション5の燃焼中の有害な分解物を参照

11. 有害性情報

セクション2で区分表示が義務付けられている特殊な成分を含有する場合には、下記の情報と一致しない場合があります。 また、成分の含有量が表示義務となる値以下の場合、成分のばく露が予想されない場合、あるいは製品全体を考慮した場合に、含有成分の毒性情報が、製品の区分、ばく露時の兆候や症状に一致しないことがあります。

毒性学的影響に関する情報

ばく露による症状

組成の試験結果や情報より、下記の健康影響が考えられる。

吸入した場合

気道刺激: 咳、くしゃみ、鼻水、頭痛、鼻と喉の痛みなどの症状。 切断、研磨、機械加工によって発生する粉じんは呼吸器系を刺激する。症状は咳、くしゃみ、鼻水、しわがれ声、喘鳴、呼吸困難、鼻と喉の痛み、吐血等など。

皮膚に付着した場合

皮膚刺激: 発赤、腫脹、かゆみ、乾燥、水疱、ひび、痛みなどの症状。 皮膚過敏症のヒトにおける非光感作性アレルギー皮膚反応: 発赤、腫脹、水疱形成、かゆみなどの症状。

眼に入った場合

製品使用中に眼に接触しても、重篤な刺激が発現するとは考えられない。 切断、研磨又は機械加工によって発生する粉じんは眼を刺激する。症状は発赤、腫脹、痛み、催涙及び視力低下など。

飲み込んだ場合

胃腸への刺激: 腹痛、胃痛、吐き気、嘔吐、下痢などの症状。

毒性データ

セクション3に開示されている化学成分で以下に情報が無い場合は、そのエンドポイントに対して利用できるデータが無いか、分類するに十分なデータが無い場合になります。

急性毒性

名称	経路	生物種	値又は判定結果
製品全体	皮膚		利用できるデータが無い:ATEで計算。5,000
			mg/kg
製品全体	吸入一蒸気		利用できるデータが無い:ATEで計算。50 mg/1
	(4 時間)		
製品全体	経口摂取		利用できるデータが無い:ATEで計算。5,000
			mg/kg
水素化重質石油ナフサ	吸入-蒸気		LC50 推定値 20 - 50 mg/1
水素化重質石油ナフサ	皮膚	ウサギ	LD50 > 3,000 mg/kg
水素化重質石油ナフサ	経口摂取	ラット	LD50 > 5,000 mg/kg
酸化アルミニウム	皮膚		LD50 推定値> 5,000 mg/kg
酸化アルミニウム	吸入一粉塵	ラット	LC50 > 2.3 mg/1
	/ミスト (4		
	時間)		
酸化アルミニウム	経口摂取	ラット	LD50 > 5,000 mg/kg
石油系溶剤	経口摂取	ラット	LD50 > 15,000 mg/kg
石油系溶剤	皮膚	類似化	LD50 > 5,000 mg/kg
		合物	
グリセリン	皮膚	ウサギ	LD50 推定值> 5,000 mg/kg
グリセリン	経口摂取	ラット	LD50 > 5,000 mg/kg
ヒマシ油	皮膚		LD50 推定值> 5,000
ヒマシ油	経口摂取		LD50 推定値> 5,000
ホワイトミネラルオイル(石油)	皮膚	ウサギ	LD50 > 2,000 mg/kg
ホワイトミネラルオイル (石油)	経口摂取	ラット	LD50 > 5,000 mg/kg
ノナン	吸入一蒸気	ラット	LC50 17 mg/l
	(4 時間)		
ノナン	皮膚	類似化	LD50 > 2,000 mg/kg
		合物	
ノナン	経口摂取	類似化	LD50 > 5,000 mg/kg
		合物	

トリエタノールアミン	皮膚	ウサギ	LD50 > 2,000 mg/kg
トリエタノールアミン	経口摂取	ラット	LD50 9,000 mg/kg
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	皮膚	ウサギ	LD50 87 mg/kg
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	吸入-粉塵 /ミスト (4 時間)	ラット	LC50 0.171 mg/l
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	経口摂取	ラット	LD50 40 mg/kg
2-メチル-4-イソチアゾリン-3-オン	皮膚	ラット	LD50 242 mg/kg
2-メチル-4-イソチアゾリン-3-オン	吸入-粉塵 /ミスト (4 時間)	ラット	LC50 0.11 mg/l
2-メチル-4-イソチアゾリン-3-オン	経口摂取	ラット	LD50 120 mg/kg

ATE=推定急性毒性

皮膚腐食性/刺激性

名称	生物種	値又は判定結果
水素化重質石油ナフサ	ウサギ	刺激物
酸化アルミニウム	ウサギ	刺激性なし
石油系溶剤	類似化合	軽度の刺激
	物	
グリセリン	ウサギ	刺激性なし
ヒマシ油	ヒト	わずかな刺激
ホワイトミネラルオイル (石油)	ウサギ	刺激性なし
ノナン	類似化合	刺激性なし
	物	
トリエタノールアミン	ウサギ	わずかな刺激
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	ウサギ	腐食性
2-メチル-4-イソチアゾリン-3-オン	ウサギ	腐食性

眼に対する重篤な損傷性/眼刺激性

名称	生物種	値又は判定結果
水素化重質石油ナフサ	ウサギ	刺激性なし
酸化アルミニウム	ウサギ	刺激性なし
石油系溶剤	類似化合	刺激性なし
	物	
グリセリン	ウサギ	刺激性なし
ヒマシ油	ウサギ	軽度の刺激
ホワイトミネラルオイル (石油)	ウサギ	軽度の刺激
ノナン	類似化合	軽度の刺激
	物	
トリエタノールアミン	ウサギ	軽度の刺激
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	ウサギ	腐食性
2-メチル-4-イソチアゾリン-3-オン	ウサギ	腐食性

呼吸器感作性または皮膚感作性

皮膚感作性

皮膚感作性		
名称	生物種	値又は判定結果
水素化重質石油ナフサ	モルモッ	区分に該当しない。
	\	
石油系溶剤	類似化合	区分に該当しない。
	物	
グリセリン	モルモッ	区分に該当しない。

	<u>۲</u>	
ヒマシ油	ヒト	区分に該当しない。
ホワイトミネラルオイル (石油)	モルモッ	区分に該当しない。
	ト	
ノナン	類似化合	区分に該当しない。
	物	
トリエタノールアミン	ヒト	区分に該当しない。
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	ヒト及び	感作性あり
	動物	
2-メチル-4-イソチアゾリン-3-オン	ヒト及び	感作性あり
	動物	

光感作性

名称	生物種	値又は判定結果
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	ヒト及び	感作性なし
	動物	
2-メチル-4-イソチアゾリン-3-オン	ヒト及び	感作性なし
	動物	

呼吸器感作性

セクション3に開示されている化学成分に対しては、利用できるデータが無いか、分類するに十分なデータが無い。

生殖細胞変異原性

生殖和肥多类原性	Joseph 1986	Education and Marketin Art. 1991
名称	経路	値又は判定結果
水素化重質石油ナフサ	In vivo	変異原性なし
水素化重質石油ナフサ	In vitro	陽性データはあるが、分類には不十分。
酸化アルミニウム	In vitro	変異原性なし
石油系溶剤	In vitro	変異原性なし
ヒマシ油	In vitro	変異原性なし
ヒマシ油	In vivo	変異原性なし
ホワイトミネラルオイル (石油)	In vitro	変異原性なし
ノナン	In vitro	変異原性なし
トリエタノールアミン	In vitro	変異原性なし
トリエタノールアミン	In vivo	変異原性なし
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	In vivo	変異原性なし
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	In vitro	陽性データはあるが、分類には不十分。
2-メチル-4-イソチアゾリン-3-オン	In vivo	変異原性なし
2-メチル-4-イソチアゾリン-3-オン	In vitro	陽性データはあるが、分類には不十分。

発がん性

<u> </u>			
名称	経路	生物種	値又は判定結果
水素化重質石油ナフサ	皮膚	マウス	陽性データはあるが、分類には不十分。
水素化重質石油ナフサ	吸入した	ヒト及	陽性データはあるが、分類には不十分。
	場合	び動物	
酸化アルミニウム	吸入した	ラット	発がん性なし
	場合		
グリセリン	経口摂取	マウス	陽性データはあるが、分類には不十分。
ホワイトミネラルオイル(石油)	皮膚	マウス	発がん性なし
ホワイトミネラルオイル (石油)	吸入した	多種類	発がん性なし
	場合	の動物	
		種	
トリエタノールアミン	皮膚	多種類	発がん性なし
		の動物	

		種	
トリエタノールアミン	経口摂取	マウス	陽性データはあるが、分類には不十分。
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	皮膚	マウス	発がん性なし
5-クロロ-2-メチル-4-イソチアゾリン-3-オン	経口摂取	ラット	発がん性なし
2-メチル-4-イソチアゾリン-3-オン	皮膚	マウス	発がん性なし
2-メチル-4-イソチアゾリン-3-オン	経口摂取	ラット	発がん性なし

生殖毒性

生殖発生影響

名称	経路	値又は判定結果	生物種	試験結果	ばく露期間
水素化重質石油ナフサ	吸入した	発生毒性区分に該当しない。	ラット	NOAEL 2.4	器官発生期
	場合			mg/1	
グリセリン	経口摂取	雌について生殖毒性は区分に該当し	ラット	NOAEL 2,000	2 世代
		ない。		mg/kg/∃	
グリセリン	経口摂取	雄について生殖毒性は区分に該当し	ラット	NOAEL 2,000	2 世代
		ない。		mg/kg/∃	
グリセリン	経口摂取	発生毒性区分に該当しない。	ラット	NOAEL 2,000	2 世代
				mg/kg/∃	
ホワイトミネラルオイル (石油)	経口摂取	雌について生殖毒性は区分に該当し	ラット	NOAEL 4, 350	13 週
		ない。		mg/kg/∃	
ホワイトミネラルオイル (石油)	経口摂取	雄について生殖毒性は区分に該当し	ラット	NOAEL 4, 350	13 週
		ない。		mg/kg/∃	
ホワイトミネラルオイル (石油)	経口摂取	発生毒性区分に該当しない。	ラット	NOAEL 4, 350	妊娠期間中
				mg/kg/∃	
トリエタノールアミン	経口摂取	発生毒性区分に該当しない。	マウス	NOAEL 1, 125	器官発生期
				mg/kg/∃	
5-クロロ-2-メチル-4-イソチアゾリン-	経口摂取	雌について生殖毒性は区分に該当し	ラット	NOAEL 10	2 世代
3-オン		ない。		mg/kg/∃	
5-クロロ-2-メチル-4-イソチアゾリン-	経口摂取	雄について生殖毒性は区分に該当し	ラット	NOAEL 10	2 世代
3-オン		ない。		mg/kg/∃	
5-クロロ-2-メチル-4-イソチアゾリン-	経口摂取	発生毒性区分に該当しない。	ラット	NOAEL 15	器官発生期
3-オン				mg/kg/∃	
2-メチル-4-イソチアゾリン-3-オン	経口摂取	雌について生殖毒性は区分に該当し	ラット	NOAEL 10	2 世代
		ない。		mg/kg/∃	
2-メチル-4-イソチアゾリン-3-オン	経口摂取	雄について生殖毒性は区分に該当し	ラット	NOAEL 10	2 世代
		ない。		mg/kg/∃	
2-メチル-4-イソチアゾリン-3-オン	経口摂取	発生毒性区分に該当しない。	ラット	NOAEL 15	器官発生期
				mg/kg/∃	

標的臟器

特定標的臓器毒性、単回ばく露

11 人口(24) 加州中央 (14) 十						
名称	経路	標的臟器	値又は判定結果	生物種	試験結果	ばく露期間
水素化重質石油ナフサ	吸入した	中枢神経系の抑制	眠気又はめまいのおそれ。	ヒト及	NOAEL 入手	
	場合			び動物	できない	
水素化重質石油ナフサ	吸入した	呼吸器への刺激	陽性データはあるが、分類に		NOAEL 入手	
	場合		は不十分。		できない	
水素化重質石油ナフサ	吸入した	神経系	区分に該当しない。	イヌ	NOAEL 6.5	4 時間
	場合				mg/l	
水素化重質石油ナフサ	経口摂取	中枢神経系の抑制	眠気又はめまいのおそれ。	専門家	NOAEL 入手	
				による	できない	
				判断		
石油系溶剤	吸入した	呼吸器への刺激	陽性データはあるが、分類に	類似健	NOAEL 入手	
	場合		は不十分。	康有害	できない	
				性		
ノナン	吸入した	中枢神経系の抑制	眠気又はめまいのおそれ。	多種類	NOAEL 入手	
	場合			の動物	できない	

				種		
ノナン	経口摂取	中枢神経系の抑制	眠気又はめまいのおそれ。	多種類	NOAEL 入手	
				の動物	できない	
				種		
5-クロロ-2-メチル-4-イ	吸入した	呼吸器への刺激	呼吸器への刺激のおそれ。	類似健	NOAEL 入手	
ソチアゾリン-3-オン	場合			康有害	できない	
				性		
2-メチル-4-イソチアゾ	吸入した	呼吸器への刺激	呼吸器への刺激のおそれ。	類似健	NOAEL 入手	
リン-3-オン	場合			康有害	できない	
				性		

特定標的臓器毒性、反復ばく露

名称	経路	標的臟器	値又は判定結果	生物種	試験結果	ばく露期間
水素化重質石油ナフサ	吸入した 場合	神経系	区分に該当しない。	ラット	LOAEL 4.6 mg/1	6 月
水素化重質石油ナフサ	吸入した 場合	腎臓および膀胱	区分に該当しない。	ラット	LOAEL 1.9 mg/l	13 週
水素化重質石油ナフサ	吸入した 場合	呼吸器系	区分に該当しない。	多種類 の動物 種	NOAEL 0.6 mg/1	90 日
水素化重質石油ナフサ	吸入した 場合	骨、歯、爪及び/ 又は毛髪 血液 肝臓 筋肉	区分に該当しない。	ラット	NOAEL 5.6 mg/1	12 週
水素化重質石油ナフサ	吸入した 場合	心臓	区分に該当しない。	多種類 の動物 種	NOAEL 1.3 mg/1	90 日
酸化アルミニウム	吸入した 場合	塵肺症	陽性データはあるが、分類に は不十分。	ヒト	NOAEL 入手 できない	職業性被ば く
酸化アルミニウム	吸入した 場合	肺線維症	区分に該当しない。	ヒト	NOAEL 入手 できない	職業性被ばく
石油系溶剤	吸入した 場合	肝臓	区分に該当しない。	ラット	NOAEL 6 mg/l	13 週
石油系溶剤	吸入した 場合	腎臓および膀胱	区分に該当しない。	ラット	LOAEL 1.5 mg/l	13 週
石油系溶剤	吸入した場合	造血器系	区分に該当しない。	ラット	NOAEL 6 mg/1	13 週
石油系溶剤	経口摂取	肝臓	区分に該当しない。	ラット	NOAEL 1,000 mg/kg/day	13 週
石油系溶剤	経口摂取	腎臓および膀胱	区分に該当しない。	ラット	LOAEL 100 mg/kg/day	13 週
石油系溶剤	経口摂取	造血器系 眼	区分に該当しない。	ラット	NOAEL 1,000 mg/kg/day	13 週
グリセリン	吸入した場合	呼吸器系 心臓 肝臓 腎臓お よび膀胱	区分に該当しない。	ラット	NOAEL 3.91 mg/l	14 日
グリセリン	経口摂取	内分泌系 造血 器系 肝臓 腎 臓および膀胱	区分に該当しない。	ラット	NOAEL 10,000 mg/kg/day	2 年
ヒマシ油	経口摂取	心臓 造血器系 肝臓	区分に該当しない。	ラット	NOAEL 4,800 mg/kg/day	13 週
ヒマシ油	経口摂取	腎臓および膀胱	区分に該当しない。	マウス	NOAEL 13,000 mg/kg/day	13 週
ホワイトミネラルオイ ル (石油)	経口摂取	造血器系	区分に該当しない。	ラット	NOAEL 1,381 mg/kg/day	90 日
ホワイトミネラルオイ ル (石油)	経口摂取	肝臓 免疫シス テム	区分に該当しない。	ラット	NOAEL 1,336 mg/kg/day	90 日
ノナン	吸入した 場合	神経系 心臓 内分泌系 消化 管 造血器系	区分に該当しない。	ラット	NOAEL 8.4 mg/1	90 日

		肝臓 筋肉 腎 臓および膀胱 呼吸器系				
ノナン	経口摂取	内分泌系 消化 管 造血器系 肝臓 呼吸器系 心臓 骨、 歯、爪及び/又は 毛髪 免疫シス テム 神経系 腎臓および膀胱 脈管系	区分に該当しない。	ラット	NOAEL 5,000 mg/kg/day	90 日
トリエタノールアミン	皮膚	腎臓および膀胱	区分に該当しない。	多種類 の動物 種	NOAEL 2,000 mg/kg/day	2 年
トリエタノールアミン	皮膚	肝臓	区分に該当しない。	マウス	NOAEL 4,000 mg/kg/day	13 週
トリエタノールアミン	経口摂取	腎臓および膀胱	陽性データはあるが、分類に は不十分。	ラット	LOAEL 1,000 mg/kg/day	2 年
トリエタノールアミン	経口摂取	肝臓	区分に該当しない。	モルモ ット	NOAEL 1,600 mg/kg/day	24 週

誤えん有害性

名称	値又は判定結果
水素化重質石油ナフサ	誤えん有害性
石油系溶剤	誤えん有害性
ホワイトミネラルオイル (石油)	誤えん有害性
ノナン	誤えん有害性

製品及び成分に関する追加の毒性情報が必要な場合には、本SDSの1ページに記載した住所、電話番号にご連絡ください。

12. 環境影響情報

セクション2で区分表示が義務付けられている特殊な成分を含有する場合には、下記の情報と一致しないことがあります。 セクション2の分類に関する追加情報が必要な場合は、弊社にお問い合わせください。また、成分の環境中での運命及び有害性は、成分の含有が表示義務となる値以下の場合、成分のばく露が予想されない場合、あるいは製品全体を考慮した場合に、この項の内容と一致しないことがあります。

生態毒性

水生環境有害性 短期(急性)

GHS水生環境有害性(急性)区分3:水生生物に有害。

水生環境有害性 長期(慢性)

GHS水生環境有害性 長期(慢性)区分3:長期継続的影響によって水生生物に有害。

製品での試験データは無い。

材料	CAS番号	生物種	種類	ばく露	テストエンド	試験結果
					ポイント	
酸化アルミニ	1344-28-1	該当なし	実験	96 時間	LC50	>100 mg/1
ウム						
酸化アルミニ	1344-28-1	緑藻類	実験	72 時間	EC50	>100 mg/1

ウム		1					
酸化アルミニ	1344-28-1	ミジンコ	実験	48	 時間	LC50	>100 mg/1
ウム	1044 20 1			10	∩ IH1	LCGO	7100 mg/1
酸化アルミニ	1344-28-1	緑藻類	実験	72	 時間	NOEC	>100 mg/1
ウム	1011 20 1			-	0 140	TODO	/ 100 mg/ 1
グリセリン	56-81-5	バクテリア	実験	16	時間	NOEC	10,000 mg/1
グリセリン	56-81-5	ニジマス	実験	+	時間	LC50	54,000 mg/1
グリセリン	56-81-5	ミジンコ	実験	+	時間	LC50	1,955 mg/1
ヒマシ油	8001-79-4			+	時間	LC50	>100 mg/1
		シュ	ンド		3 11-3		/ 100 mg/ 1
ヒマシ油	8001-79-4	バクテリア	類似コンパウ ンド	16	時間	NOEC	10,000 mg/1
ノナン	111-84-2	ミジンコ	実験	48	時間	EC50	0.2 mg/1
2-メチル-4-	2682-20-4	珪藻	実験		時間	ErC50	0.099 mg/1
イソチアゾリ							J.
ン-3-オン							
2-メチル-4-	2682-20-4	緑藻類	実験	96	時間	ErC50	0.23 mg/1
イソチアゾリ							
ン-3-オン							
2-メチル-4-	2682-20-4	アミ	実験	96	時間	LC50	1.81 mg/l
イソチアゾリ							
ン-3-オン							
2-メチル-4-	2682-20-4	シープスヘッ	実験	96	時間	LC50	25.1 mg/1
イソチアゾリ		ドミノウ					
ン-3-オン							
	2682-20-4	ミジンコ	実験	48	時間	LC50	0.934 mg/1
イソチアゾリ							
ン-3-オン							((((((((((((((((((((
	2682-20-4	ブラックワー	実験	28	目	NOEC	25 mg/kg(乾燥重
イソチアゾリ		ム(蠕虫)					量)
ン-3-オン	0.000 00 4	자 #	→ -	7.0	n+ HH	D 010	0.04 /1
	2682-20-4	珪藻	実験	72	時間	ErC10	0.04 mg/1
イソチアゾリ ン-3-オン							
2-メチル-4-	2622 20 4	ファットヘッ	中 段	33	П	NOEC	0 1 /1
2- イソチアゾリ	2682-20-4	ドミノウ	夫 禊 	33	H	NOEC	2.1 mg/1
ン-3-オン		r ミノワ (魚)					
2-メチル-4-	2682-20-4	緑藻類	実験	96	 時間	NOEC	0.12 mg/1
イソチアゾリ	2002 20 4	水保規		90	<u>⊬</u> Δ[⊨]	NOEC	0.12 lig/1
ン-3-オン							
2-メチル-4-	2682-20-4	ミジンコ	実験	21		NOEC	0.044 mg/1
イソチアゾリ					Г		V. VII mg/ I
ン-3-オン							
2-メチル-4-	2682-20-4	液状化	実験	3 ₽	 寺間	EC50	41 mg/l
イソチアゾリ					- 1.4		
ン-3-オン							
5-クロロ-2-	26172-55-4	珪藻	実験	72	時間	EbC50	0.021 mg/1
メチル-4-イ		1			· •		J.

							ソチアゾリン
		1					-3-オン
	0.018 mg/1	ErC50	96 時間	実験	緑藻類	26172-55-4	
	0.010 mg/1	Licoo	20 HJ [H]			20112 00 4	メチル-4-イ
							ソチアゾリン
							-3-オン
	0.33 mg/1	EC50	96 時間	実験	アミ	26172-55-4	
	0.00 mg/ 1	2000	00 / 1/143				メチル-4-イ
							ソチアゾリン
							-3-オン
-	0.19 mg/1	LC50	96 時間	実験	ニジマス	26172-55-4	5-クロロ-2-
				·			メチル-4-イ
							ソチアゾリン
							-3-オン
	0.36 mg/1	LC50	96 時間	実験	シープスヘッ	26172-55-4	5-クロロ-2-
					ドミノウ		メチル-4-イ
							*
	0.18 mg/1	EC50	48 時間	実験	ミジンコ	26172-55-4	-
					1.1.11		
	0.01 mg/1	NOEL	72 時間	実験	珪藻	26172-55-4	
	0.00 /1	None	0.0	<i>←</i> → E Λ		00150 55 4	
	0.02 mg/1	NOEC	36 ∄	実験		26172-55-4	
							*
	0 172 mg/1	NOEC	21 □	宇駐	ミミシノコ	26172-55-4	
	0.172 mg/1	NOLC	21 H			20172 33 4	
	100 ppm 摂取	LC50	8 目	実験	鳥	26172-55-4	
	100 bbm 15/20/	2000			7119		
							ソチアゾリン
							-3-オン
	>1,000 mg/1	EL50	72 時間	推定値	緑藻類	64742-14-9	石油系溶剤
-	- 	LL50	96 時間	推定値	ニジマス	64742-14-9	
		EL50	48 時間	推定値	ミジンコ	64742-14-9	
	>1,000 mg/1	NOEL	72 時間	推定値	緑藻類	64742-14-9	石油系溶剤
	8.2 mg/1	LL50	96 時間	推定値	ファットヘッ	64742-48-9	水素化重質石
					ドミノウ		油ナフサ
					(魚)		
	3.1 mg/1	EL50	72 時間	推定値	緑藻類	64742-48-9	水素化重質石
							油ナフサ
	4.5 mg/1	EL50	48 時間	推定値	ミジンコ	64742-48-9	水素化重質石
	0. 18 mg/l 0. 01 mg/l 0. 02 mg/l 0. 172 mg/l 100 ppm 摂取 >1,000 mg/l >1,000 mg/l >1,000 mg/l >1,000 mg/l >1,000 mg/l 31,000 mg/l 31,000 mg/l 31,000 mg/l 31,000 mg/l	EC50 NOEC NOEC LC50 EL50 LL50 EL50 NOEL LL50 EL50	48 時間 72 時間 36 日 21 日 8 日 72 時間 96 時間 48 時間 72 時間 96 時間 72 時間 72 時間	実 実 実 実 推推推推 推 験 験 値値値値値 値 値	ド ミ 蓮 フド(s i j j j j j j j j j j j j j j j j j j	26172-55-4 26172-55-4 26172-55-4 26172-55-4 26172-55-4 64742-14-9 64742-14-9 64742-14-9 64742-14-9 64742-48-9	5-メソ-3- - メソ-3- - タチチオロー4-リー2- - スナチオロルアンロー4-リー2- - スナチオロルアンロー4-リー2- - スナチオロルアンロー4-リー2- - スーリー2- - スーナーリー2- - スーナーリー2- - スーナーリー2- - スーナーリー2- - スーナーリー3- - スーナー3- - スー

油ナフサ						
水素化重質石	64742-48-9	緑藻類	推定値	72 時間	NOEL	0.5 mg/1
油ナフサ						
水素化重質石	64742-48-9	ミジンコ	推定値	21 日	NOEL	2.6 mg/1
油ナフサ						
トリエタノー	102-71-6	液状化	実験	3 時間	IC50	>1,000 mg/1
ルアミン						
トリエタノー	102-71-6	ファットヘッ	実験	96 時間	LC50	11,800 mg/1
ルアミン		ドミノウ				
		(魚)				
トリエタノー	102-71-6	緑藻類	実験	72 時間	ErC50	512 mg/1
ルアミン						
トリエタノー	102-71-6	ミジンコ	実験	48 時間	EC50	609.98 mg/1
ルアミン						
トリエタノー	102-71-6	緑藻類	実験	72 時間	ErC10	26 mg/1
ルアミン						
トリエタノー	102-71-6	ミジンコ	実験	21 日	NOEC	16 mg/l
ルアミン						
ホワイトミネ	8042-47-5	ミジンコ	類似コンパウ	48 時間	EL50	>100 mg/1
ラルオイル			ンド			
(石油)						
ホワイトミネ	8042-47-5	ブルーギル	実験	96 時間	LL50	>100 mg/1
ラルオイル						
(石油)						
ホワイトミネ	8042-47-5	緑藻類	類似コンパウ	72 時間	NOEL	100 mg/1
ラルオイル			ンド			
(石油)						
ホワイトミネ	8042-47-5	ミジンコ	類似コンパウ	21 日	NOEL	>100 mg/1
ラルオイル			ンド			
(石油)						

残留性・分解性

材料	CAS番号	試験の種類	期間	試験の種類	試験結果	プロトコル
酸化アルミニ	1344-28-1	データ不足	該当なし	該当なし	該当なし	該当なし
ウム						
グリセリン	56-81-5	実験 生分解	14 日	生物学的酸素	63 %BOD/ThOD	OECD 301C-MITI(1)
		性		要求量		
ヒマシ油	8001-79-4	類似コンパウ	28 日	生物学的酸素	64 %BOD/ThOD	OECD 301D - クロー
		ンド 生分解		要求量		ズドボトル法
		性				
ノナン	111-84-2	実験 生分解	28 日	生物学的酸素	96 %BOD/ThOD	
		性		要求量		
ノナン	111-84-2	実験 光分解		光分解半減期	3.07 日 (t	
				(空気中)	1/2)	
2-メチル-4-	2682-20-4	実験 生分解	29 日	二酸化炭素の	50 CO2発生量	OECD 301B - 修正シ
イソチアゾリ		性		発生	/理論C02発生	ュツルム試験又は二
ン-3-オン					量%	酸化炭素

2-メチル-4- イソチアゾリ	2682-20-4	実験 加水分 解		加水分解性半 減期(pH7)	>1 年(t 1/2)	OECD 111 pHに応じた 加水分解
ン-3-オン 5-クロロ-2- メチル-4-イ ソチアゾリン	26172-55-4	実験 水生固有生分解性	2 日	生物学的酸素 要求量	97 %BOD/COD	OECD 302B Zahn- Wellens/EVPA試験
-3-オン 5-クロロ-2- メチル-4-イ ソチアゾリン	26172-55-4	実験 生分解性	28 日	二酸化炭素の 発生	62 CO2発生量 /理論CO2発生 量%	0ECD 301B類似法
-3-オン 5-クロロ-2- メチル-4-イ ソチアゾリン -3-オン	26172-55-4	実験 加水分解		加水分解性半減期 塩基性pH	13 日(t 1/2)	OECD 111 pHに応じた 加水分解
石油系溶剤	64742-14-9	推定値 生分 解性	28 日	生物学的酸素 要求量	69 %BOD/ThOD	0ECD 301F
水素化重質石油ナフサ	64742-48-9	推定値 生分 解性	28 日	生物学的酸素 要求量	10 %BOD/ThOD	OECD 301D - クロー ズドボトル法
トリエタノー ルアミン	102-71-6	実験 生分解性	19 日	DOC(溶存有 機炭素)残留 量	96 DOC除去%	OECD 301E類似法
ホワイトミネ ラルオイル (石油)	8042-47-5	実験 生分解性	28 日	二酸化炭素の 発生	0 CO2発生量/ 理論CO2発生 量%	OECD 301B - 修正シ ュツルム試験又は二 酸化炭素

生体蓄積性

材料	CAS番号	試験の種類	期間	試験の種類	試験結果	プロトコル
酸化アルミニ	1344-28-1	分類にデー	該当なし	該当なし	該当なし	該当なし
ウム		タが利用でき				
		ない、あるい				
		は不足してい				
		る。				
グリセリン	56-81-5	実験 生態濃		オクタノール	-1. 76	
		縮		/水 分配係		
				数		
ヒマシ油	8001-79-4	モデル 生態		生物濃縮係数	7	Catalogic™
		濃縮				
ノナン	111-84-2	実験 生態濃		オクタノール	5. 65	
		縮		/水 分配係		
				数		
2-メチル-4-	2682-20-4	類似コンパウ	56 日	生物濃縮係数	5. 75	
イソチアゾリ		ンド BCF -				
ン-3-オン		魚				
2-メチル-4-	2682-20-4	実験 生態濃		オクタノール	-0. 486	OECD107 log Kow フ
イソチアゾリ		縮		/水 分配係		ラスコ振騰法
ン-3-オン				数		

5-クロロ-2- メチル-4-イ ソチアゾリン -3-オン	26172-55-4	実験 生態濃縮		オクタノール /水 分配係 数	0. 45	
石油系溶剤	64742-14-9	分類にデー タが利用でき ない、あるい は不足してい る。	該当なし	該当なし	該当なし	該当なし
水素化重質石油ナフサ	64742-48-9	分類にデー タが利用でき ない、あるい は不足してい る。	該当なし	該当なし	該当なし	該当なし
トリエタノー ルアミン	102-71-6	実験 BCF - 魚	42 日	生物濃縮係数	<3.9	OECD 305類似法
ホワイトミネ ラルオイル (石油)	8042-47-5	分類にデー タが利用でき ない、あるい は不足してい る。	該当なし	該当なし	該当なし	該当なし

土壌中の移動性

データはない。

オゾン層への有害性

データはない。

13. 廃棄上の注意

廃棄方法

関係法令に従って、産業廃棄物として自社で処分するか産業廃棄物処理業者に委託して処分する。

14. 輸送上の注意

国内規制がある場合の規制情報

船舶及び航空輸送上の危険物には該当しない。(国際連合危険物に該当しない) 取り扱い及び保管上の注意の項の記載による他、消防法などの法令の定めるところに従う。

15. 適用法令

国内法規制及び関連情報

日本国内法規制(主な適用法令)

労働安全衛生法:危険性又は有害性等を調査(リスクアセスメント)すべき物(法第57条の3)労働安全衛生法:皮膚等障害化学物質(安衛則第594条の2第1項);本SDSのGHS分類により適用

労働安全衛生法:施行令18条の2 名称等を通知すべき有害物

労働安全衛生法:施行令18条有害物質(表示物質) 労働安全衛生法:施行令別表第6の2 有機溶剤

消防法:指定可燃物(可燃性液体類)

主な法規制物質

労働安全衛生法:通知・リスクアセスメント・表示義務対象物質

成分	法律又は政令名称		2025年4月1日以降 2026年3月31日迄	2026年4月1日以降
石油系溶剤	石油ナフサ	該当	該当	該当
水素化重質石油ナフサ	ミネラルスピリット(ミネラル シンナー、ペトロリウムスピリ ット、ホワイトスピリット及び ミネラルターペンを含む。)		該当	該当
トリエタノールアミン	トリエタノールアミン	該当	該当	該当
ホワイトミネラルオイル (石油)	鉱油	該当	該当	該当

16. その他の情報

改訂情報

セクション15:労働安全衛生法の表「2025年4月1日以降2026年3月31日迄」 情報の追加.

セクション15:労働安全衛生法の表「2026年4月1日以降」 情報の追加.

セクション2:環境影響ステートメント 情報修正.

セクション2:GHS分類 情報修正.

セクション2:注意書き - 応急措置 情報修正.

セクション3:成分表 情報修正.

項目4: 応急措置 - 症状及び影響 情報の追加. セクション5: 燃焼時有害性の表 情報の追加. セクション6: 事故漏出時の清掃 情報修正. セクション8: 眼の保護具 情報の追加.

セクション8:眼および顔面保護 情報の削除.

セクション8:作業環境許容値 情報修正. セクション8:保護具 - 眼 情報の削除.

セクション8:呼吸器保護 - 推奨する呼吸保護具の情報 情報修正.

セクション9:燃焼性(固体、ガス)情報 情報の削除.

セクション9:引火性情報 情報の追加. セクション9:動粘度情報 情報の追加.

セクション9:粒子特性 適用しない 情報の追加.

セクション9:粘度 情報の削除.

セクション10:有害な分解物の表 情報修正.

セクション10:燃焼中の有害な分解物 情報の追加.

セクション11:急性毒性の表 情報修正. セクション11:吸引毒性の表 情報修正. セクション11:発がん性の表 情報修正.

セクション11:生殖胞変異原性の表 情報修正.

セクション11:健康影響情報(飲み込んだ場合) 情報修正. セクション11:健康影響情報(吸入した場合) 情報修正.

セクション11: 光感作性の表 情報の追加. セクション11: 生殖毒性の表 情報修正.

セクション11:重篤な眼へのダメージ/刺激の表 情報修正.

セクション11:皮膚腐食性/刺激性の表 情報修正.

セクション11:皮膚感作性の表 情報修正.

セクション11:標的臓器 - 反復ばく露の表 情報修正. セクション11:標的臓器 - 単回ばく露の表 情報修正. セクション12:水生生物への慢性毒性情報 情報の追加.

セクション12:成分生態毒性情報 情報修正.

セクション12:残留性および分解性の情報 情報修正.

セクション12:生態濃縮性情報 情報修正. セクション15:労働安全衛生法の表 情報修正.

免責事項:この安全データシート(SDS)の情報は、発行時における当社の知見に基づき正確であると考えていますが、当社は、その使用から生じる損失、損害または傷害に関する賠償責任を引き受けるものではありません。 (法令で要求される場合を除く)本SDSの記載内容は、記載されている範囲外の使用、あるいは他の物質と組み合わせての使用では効力を持ちません。これらの理由から、お客様がご自身の用途に製品が適合しているかどうかをご自身で評価することが重要です。加えて、本安全データシートは安全衛生情報もお伝えしております。日本国へ本製品を輸入されるお客様は、製品の登録・届出、物質量の監視、想定される物質の登録・届出を含む(これらに限定されるものではありません)適用される全ての法的要求について責任を負います。

3MジャパングループのSDSは日本のウェブサイトから入手できます。