

Safety Data Sheet

Copyright, 2019, 3M Company.

All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document Group:
 22-9794-3
 Version Number:
 3.00

 Issue Date:
 24/12/2019
 Supercedes Date:
 01/01/2015

This Safety Data Sheet has been prepared in accordance with the Malaysia Occupational Safety and Health (Chemical Classification, Labelling and Safety Data Sheets) Regulations 2013.

SECTION 1: Identification

1.1. Product identifier

3M[™] Screen Printing UV Ink 9875P Process Cyan

Product Identification Numbers

75-3470-9858-6 75-3472-5669-7

1.2. Recommended use and restrictions on use

Recommended use

Screen Printing Ink, Ink

For Industrial or Professional use only

1.3. Supplier's details

ADDRESS: 3M Malaysia Sdn. Bhd., Level 8, Block F, Oasis Square, No.2, Jalan PJU 1A/7A, Ara Damansara 47301

Petaling, Jaya, Selangor

Telephone: 03-7884 2888

E Mail: 3mmyehsr@mmm.com Website: www.3M.com.my

1.4. Emergency telephone number

+60 03-7884 2888

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture

Serious Eye Damage/Irritation: Category 2.

Skin Sensitizer: Category 1.

Reproductive Toxicity: Category 1B.

Specific Target Organ Toxicity (repeated exposure): Category 1.

Chronic Aquatic Toxicity: Category 2.

2.2. Label elements

Signal word

Danger

Symbols

Exclamation mark | Health Hazard | Environment |

Pictograms

Hazard Statements

H319 Causes serious eye irritation.
H317 May cause an allergic skin reaction.
H360 May damage fertility or the unborn child.

H372 Causes damage to organs through prolonged or repeated exposure:

respiratory system

H411 Toxic to aquatic life with long lasting effects.

Precautionary statements

General:

P102 Keep out of reach of children.

P101 If medical advice is needed, have product container or label at hand.

Prevention:

P201 Obtain special instructions before use.

P260A Do not breathe vapors.
P280E Wear protective gloves.

P281 Use personal protective equipment as required.

P273 Avoid release to the environment.

Response:

P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses, if present and easy to do. Continue rinsing.

P333 + P313 If skin irritation or rash occurs: Get medical advice/attention.

P308 + P313 If exposed or concerned: Get medical advice/attention.

Storage:

P405 Store locked up.

Disposal:

P501 Dispose of contents/container in accordance with applicable

local/regional/national/international regulations.

2.3. Other hazards

None known

SECTION 3: Composition/information on ingredients

This material is a mixture.

Ingredient	C.A.S. No.	% by Wt
PHENOXY ETHYL ACRYLATE	48145-04-6	30 - 40
VINYLCAPROLACTAM	2235-00-9	10 - 20

METHACRYLATE POLYMER	Trade Secret	10 - 20
ALIPHATIC URETHANE ACRYLATE	Trade Secret	7 - 13
1-PROPANONE, 2-METHYL-1-[4-	71868-10-5	1 - 5
(METHYLTHIO)PHENYL]-2-(4-		
MORPHOLINYL)-		
1-BUTANONE, 2-(DIMETHYLAMINO)-	119313-12-1	1 - 5
1-[4-(4-MORPHOLINYL)PHENYL]-2-		
(PHENYLMETHYL)-		
2-PHENOXYETHANOL	122-99-6	1 - 5
COPPER PHTHALOCYANINE BLUE	147-14-8	1 - 5
DIETHYLENE GLYCOL ETHYL ETHER	7328-17-8	1 - 5
ACRYLATE		
SYNTHETIC AMORPHOUS SILICA,	112945-52-5	1 - 5
FUMED, CRYSTALLINE FREE		
.ALPHA.,.ALPHA.',.ALPHA."-1,2,3-	52408-84-1	0.1 - 1.0
PROPANETRIYLTRIS[POLYPROPYLEN		
E GLYCOL ACRYLATE]		
OCTAMETHYLCYCLOTETRASILOXAN	556-67-2	0.1 - 1.0
E		
TMPEOTA	28961-43-5	< 1.0

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

Remove person to fresh air. If you feel unwell, get medical attention.

Skin Contact:

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

Eve Contact:

Immediately flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. Get medical attention.

If Swallowed:

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable.

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

Closed containers exposed to heat from fire may build pressure and explode.

Hazardous Decomposition or By-Products

Substance

Formaldehyde Carbon monoxide Carbon dioxide Condition

During Combustion During Combustion During Combustion

5.3. Special protective actions for fire-fighters

Water may not effectively extinguish fire; however, it should be used to keep fire-exposed containers and surfaces cool and prevent explosive rupture.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment. For larger spills, cover drains and build dikes to prevent entry into sewer systems or bodies of water.

6.3. Methods and material for containment and cleaning up

Contain spill. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue with an appropriate solvent selected by a qualified and authorized person. Ventilate the area with fresh air. Read and follow safety precautions on the solvent label and SDS. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Do not handle until all safety precautions have been read and understood. Do not breathe dust/fume/gas/mist/vapors/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Avoid contact with oxidizing agents (eg. chlorine, chromic acid etc.) Use personal protective equipment (gloves, respirators, etc.) as required.

7.2. Conditions for safe storage including any incompatibilities

Keep cool. Protect from sunlight. Store away from heat. Store away from oxidizing agents. Store away from areas where product may come into contact with food or pharmaceuticals.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	C.A.S. No.	Agency	Limit type	Additional Comments
COPPER COMPOUNDS	147-14-8	ACGIH	TWA(as Cu dust or mist):1	
			mg/m3;TWA(as Cu, fume):0.2	
			mg/m3	

VINYLCAPROLACTAM	2235-00-9	Manufacturer	TWA:0.1 ppm(0.57 mg/m3)	
		determined		

ACGIH: American Conference of Governmental Industrial Hygienists

CMRG: Chemical Manufacturer's Recommended Guidelines

Malaysia OELs: Malaysia. Occupational Safety and Health (Use and Standards of Exposure of Chemicals Hazardous to Health) Regulations

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Provide local exhaust ventilation at transfer points. Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapors/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Indirect Vented Goggles

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing. Note: Nitrile gloves may be worn over polymer laminate gloves to improve dexterity. Gloves made from the following material(s) are recommended: Polymer laminate

If this product is used in a manner that presents a higher potential for exposure (eg. spraying, high splash potential etc.), then use of protective coveralls may be necessary. Select and use body protection to prevent contact based on the results of an exposure assessment. The following protective clothing material(s) are recommended: Apron - polymer laminate

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapors and particulates

For questions about suitability for a specific application, consult with your respirator manufacturer.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical stateLiquidSpecific Physical Form:Liquid

Color Cyan

Odor Mild Acrylic, Sweet Acrylic

Odor thresholdNo Data AvailablepHNot ApplicableMelting point/Freezing pointNot ApplicableBoiling point/Initial boiling point/Boiling range> 148.9 °C

Flash Point > 93.3 °C [Test Method:Pensky-Martens Closed Cup]

Evaporation rate < 1 [Ref Std:BUOAC=1]

Flammability (solid, gas)

Flammable Limits(LEL)

Flammable Limits(UEL)

Vapor Pressure

Vapor Density

No Data Available

No Data Available

No Data Available

No Data Available

Approximately 1.3 g/ml

Relative Density Approximately 1.3 [Ref Std:WATER=1]

Water solubility Negligible

Solubility- non-waterNo Data AvailablePartition coefficient: n-octanol/ waterNo Data AvailableAutoignition temperatureNo Data AvailableDecomposition temperatureNo Data AvailableViscosityNo Data Available

Volatile Organic Compounds 4 g/l

Percent volatile 1 - 5 % weight

VOC Less H2O & Exempt Solvents 4 g/l

SECTION 10: Stability and reactivity

10.1. Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section.

10.2. Chemical stability

Stable.

10.3. Possibility of hazardous reactions

Hazardous polymerization may occur. Upon loss of initiator or with exposure to heat.

10.4. Conditions to avoid

Sparks and/or flames

Heat

10.5. Incompatible materials

Strong oxidizing agents

10.6. Hazardous decomposition products

Substance Condition

None known.

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labeling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

Respiratory Tract Irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain.

May cause additional health effects (see below).

Skin Contact:

Mild Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, and dryness. Allergic Skin Reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching.

Eve Contact:

Severe Eye Irritation: Signs/symptoms may include significant redness, swelling, pain, tearing, cloudy appearance of the cornea, and impaired vision.

Ingestion:

May be harmful if swallowed.

Gastrointestinal Irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhea.

May cause additional health effects (see below).

Additional Health Effects:

Prolonged or repeated exposure may cause target organ effects:

Respiratory Effects: Signs/symptoms may include cough, shortness of breath, chest tightness, wheezing, increased heart rate, bluish colored skin (cyanosis), sputum production, changes in lung function tests, and/or respiratory failure.

Reproductive/Developmental Toxicity:

Contains a chemical or chemicals which can cause birth defects or other reproductive harm.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000 mg/kg
Overall product	Ingestion		No data available; calculated ATE2,000 - 5,000 mg/kg
PHENOXY ETHYL ACRYLATE	Dermal	Rat	LD50 > 2,000 mg/kg
PHENOXY ETHYL ACRYLATE	Ingestion	Rat	LD50 > 5,000 mg/kg
METHACRYLATE POLYMER	Dermal		LD50 estimated to be > 5,000 mg/kg
METHACRYLATE POLYMER	Ingestion		LD50 estimated to be 2,000 - 5,000 mg/kg
VINYLCAPROLACTAM	Dermal	Rabbit	LD50 1,700 mg/kg
VINYLCAPROLACTAM	Ingestion	Rat	LD50 1,049 mg/kg
SYNTHETIC AMORPHOUS SILICA, FUMED,	Dermal	Rabbit	LD50 > 5,000 mg/kg
CRYSTALLINE FREE			
SYNTHETIC AMORPHOUS SILICA, FUMED,	Inhalation-	Rat	LC50 > 0.691 mg/l
CRYSTALLINE FREE	Dust/Mist		
	(4 hours)		
SYNTHETIC AMORPHOUS SILICA, FUMED,	Ingestion	Rat	LD50 > 5,110 mg/kg
CRYSTALLINE FREE			
COPPER PHTHALOCYANINE BLUE	Dermal		LD50 estimated to be > 5,000 mg/kg
COPPER PHTHALOCYANINE BLUE	Ingestion	Rat	LD50 10,000 mg/kg
DIETHYLENE GLYCOL ETHYL ETHER ACRYLATE	Dermal		LD50 estimated to be 1,000 - 2,000 mg/kg

DIETHYLENE GLYCOL ETHYL ETHER ACRYLATE	Ingestion	Rat	LD50 1,860 mg/kg
1-PROPANONE, 2-METHYL-1-[4-(METHYLTHIO)PHENYL]-	Dermal	Rat	LD50 > 2,000 mg/kg
2-(4-MORPHOLINYL)-			
1-PROPANONE, 2-METHYL-1-[4-(METHYLTHIO)PHENYL]-	Ingestion	Rat	LD50 967 mg/kg
2-(4-MORPHOLINYL)-			
1-BUTANONE, 2-(DIMETHYLAMINO)-1-[4-(4-	Dermal	Rat	LD50 > 2,000 mg/kg
MORPHOLINYL)PHENYL]-2-(PHENYLMETHYL)-			
1-BUTANONE, 2-(DIMETHYLAMINO)-1-[4-(4-	Ingestion	Rat	LD50 > 5,000 mg/kg
MORPHOLINYL)PHENYL]-2-(PHENYLMETHYL)-			
2-PHENOXYETHANOL	Dermal	Rabbit	LD50 > 2,000 mg/kg
2-PHENOXYETHANOL	Inhalation-	Rat	LC50 > 1.5 mg/l
	Dust/Mist		
2-PHENOXYETHANOL	Ingestion	Rat	LD50 1,260 mg/kg
TMPEOTA	Dermal	Rabbit	LD50 > 13,000 mg/kg
TMPEOTA	Ingestion	Rat	LD50 > 2,000 mg/kg
.ALPHA.,.ALPHA.',.ALPHA."-1,2,3-	Dermal	Rabbit	LD50 > 2,000 mg/kg
PROPANETRIYLTRIS[POLYPROPYLENE GLYCOL			
ACRYLATE]			
.ALPHA.,.ALPHA.',.ALPHA."-1,2,3-	Ingestion	Rat	LD50 > 2,000 mg/kg
PROPANETRIYLTRIS[POLYPROPYLENE GLYCOL			
ACRYLATE]			
OCTAMETHYLCYCLOTETRASILOXANE	Dermal	Rat	LD50 > 2,400 mg/kg
OCTAMETHYLCYCLOTETRASILOXANE	Inhalation-	Rat	LC50 36 mg/l
	Dust/Mist		
	(4 hours)		
OCTAMETHYLCYCLOTETRASILOXANE	Ingestion	Rat	LD50 > 5,000 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
PHENOXY ETHYL ACRYLATE	Rabbit	No significant irritation
VINYLCAPROLACTAM	Rabbit	Minimal irritation
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLINE FREE	Rabbit	No significant irritation
COPPER PHTHALOCYANINE BLUE	Rabbit	No significant irritation
DIETHYLENE GLYCOL ETHYL ETHER ACRYLATE	Rabbit	Irritant
1-PROPANONE, 2-METHYL-1-[4-(METHYLTHIO)PHENYL]-2-(4-	Rabbit	No significant irritation
MORPHOLINYL)-		
1-BUTANONE, 2-(DIMETHYLAMINO)-1-[4-(4-MORPHOLINYL)PHENYL]-	Rabbit	No significant irritation
2-(PHENYLMETHYL)-		
2-PHENOXYETHANOL	Rabbit	No significant irritation
TMPEOTA	Rabbit	Minimal irritation
.ALPHA.,.ALPHA.',.ALPHA."-1,2,3-	Rabbit	Minimal irritation
PROPANETRIYLTRIS[POLYPROPYLENE GLYCOL ACRYLATE]		
OCTAMETHYLCYCLOTETRASILOXANE	Rabbit	Minimal irritation

Serious Eye Damage/Irritation

Name	Species	Value
PHENOXY ETHYL ACRYLATE	Rabbit	No significant irritation
VINYLCAPROLACTAM	Rabbit	Severe irritant
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLINE FREE	Rabbit	No significant irritation
COPPER PHTHALOCYANINE BLUE	Rabbit	No significant irritation
DIETHYLENE GLYCOL ETHYL ETHER ACRYLATE	Rabbit	Severe irritant
1-PROPANONE, 2-METHYL-1-[4-(METHYLTHIO)PHENYL]-2-(4-	Rabbit	No significant irritation
MORPHOLINYL)-		
1-BUTANONE, 2-(DIMETHYLAMINO)-1-[4-(4-MORPHOLINYL)PHENYL]-	Rabbit	No significant irritation
2-(PHENYLMETHYL)-		
2-PHENOXYETHANOL	Rabbit	Corrosive
TMPEOTA	Rabbit	Severe irritant
.ALPHA.,.ALPHA.',.ALPHA."-1,2,3-	Rabbit	Severe irritant
PROPANETRIYLTRIS[POLYPROPYLENE GLYCOL ACRYLATE]		
OCTAMETHYLCYCLOTETRASILOXANE	Rabbit	No significant irritation

Skin Sensitization

Name	Species	Value
PHENOXY ETHYL ACRYLATE	Guinea	Sensitizing
PHENOXI EINIL ACKILAIE		Sensitizing
VINYLCAPROLACTAM	Mouse Pig	Sensitizing
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLINE FREE	Human	Not classified
STATILETIC AMORPHOUS SILICA, FUMED, CRISTALLINE FREE	and	Not classified
	animal	
COPPER PHTHALOCYANINE BLUE	Human	Not classified
DIETHYLENE GLYCOL ETHYL ETHER ACRYLATE	Guinea	Sensitizing
	pig	
1-BUTANONE, 2-(DIMETHYLAMINO)-1-[4-(4-MORPHOLINYL)PHENYL]-	Guinea	Not classified
2-(PHENYLMETHYL)-	pig	
2-PHENOXYETHANOL	Guinea	Not classified
	pig	
TMPEOTA	Guinea	Sensitizing
	pig	
.ALPHA.,.ALPHA.',.ALPHA."-1,2,3-	Mouse	Sensitizing
PROPANETRIYLTRIS[POLYPROPYLENE GLYCOL ACRYLATE]		
OCTAMETHYLCYCLOTETRASILOXANE	Human	Not classified
	and	
	animal	

Respiratory Sensitization

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
VINYLCAPROLACTAM	In Vitro	Not mutagenic
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLINE FREE	In Vitro	Not mutagenic
COPPER PHTHALOCYANINE BLUE	In Vitro	Not mutagenic
1-BUTANONE, 2-(DIMETHYLAMINO)-1-[4-(4-MORPHOLINYL)PHENYL]-	In Vitro	Not mutagenic
2-(PHENYLMETHYL)-		
1-BUTANONE, 2-(DIMETHYLAMINO)-1-[4-(4-MORPHOLINYL)PHENYL]-	In vivo	Not mutagenic
2-(PHENYLMETHYL)-		
OCTAMETHYLCYCLOTETRASILOXANE	In Vitro	Some positive data exist, but the data are not
		sufficient for classification

Carcinogenicity

Name	Route	Species	Value
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLINE	Not	Mouse	Some positive data exist, but the data are not
FREE	Specified		sufficient for classification
COPPER PHTHALOCYANINE BLUE	Ingestion	Mouse	Not carcinogenic

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
PHENOXY ETHYL ACRYLATE	Ingestion	Not classified for male reproduction	Rat	NOAEL 800 mg/kg/day	43 days
PHENOXY ETHYL ACRYLATE	Ingestion	Toxic to female reproduction	Rat	NOAEL 300 mg/kg/day	premating into lactation
PHENOXY ETHYL ACRYLATE	Ingestion	Toxic to development	Rat	NOAEL 300 mg/kg/day	premating into lactation
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLINE FREE	Ingestion	Not classified for female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLINE FREE	Ingestion	Not classified for male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLINE FREE	Ingestion	Not classified for development	Rat	NOAEL 1,350 mg/kg/day	during organogenesis

COPPER PHTHALOCYANINE BLUE	Ingestion	Not classified for female reproduction	Rat	NOAEL 1,000 mg/kg/day	premating into lactation
COPPER PHTHALOCYANINE BLUE	Ingestion	Not classified for male reproduction	Rat	NOAEL 1,000 mg/kg/day	42 days
COPPER PHTHALOCYANINE BLUE	Ingestion	Not classified for development	Rat	NOAEL 1,000 mg/kg/day	premating into lactation
1-PROPANONE, 2-METHYL-1-[4- (METHYLTHIO)PHENYL]-2-(4- MORPHOLINYL)-	Ingestion	Toxic to female reproduction	Rat	LOAEL 40 mg/kg/day	1 generation
1-PROPANONE, 2-METHYL-1-[4- (METHYLTHIO)PHENYL]-2-(4- MORPHOLINYL)-	Ingestion	Toxic to development	Rat	LOAEL 40 mg/kg/day	1 generation
1-BUTANONE, 2-(DIMETHYLAMINO)- 1-[4-(4-MORPHOLINYL)PHENYL]-2- (PHENYLMETHYL)-	Ingestion	Not classified for female reproduction	Rat	NOAEL 300 mg/kg/day	1 generation
1-BUTANONE, 2-(DIMETHYLAMINO)- 1-[4-(4-MORPHOLINYL)PHENYL]-2- (PHENYLMETHYL)-	Ingestion	Not classified for male reproduction	Rat	NOAEL 300 mg/kg/day	1 generation
1-BUTANONE, 2-(DIMETHYLAMINO)- 1-[4-(4-MORPHOLINYL)PHENYL]-2- (PHENYLMETHYL)-	Ingestion	Toxic to development	Rat	NOAEL 30 mg/kg/day	1 generation
OCTAMETHYLCYCLOTETRASILOXA NE	Inhalation	Not classified for male reproduction	Rat	NOAEL 8.5 mg/l	2 generation
OCTAMETHYLCYCLOTETRASILOXA NE	Ingestion	Toxic to female reproduction	Rabbit	NOAEL 50 mg/kg/day	during organogenesis
OCTAMETHYLCYCLOTETRASILOXA NE	Inhalation	Toxic to female reproduction	Rat	NOAEL 3.6 mg/l	2 generation

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
VINYLCAPROLACTAM	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL Not available	
2-PHENOXYETHANOL	Inhalation respiratory irritation		Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
VINYLCAPROLACTAM	Inhalation	respiratory system	Causes damage to organs through prolonged or repeated exposure	Rat	NOAEL 0.001 mg/l	28 days
VINYLCAPROLACTAM	Inhalation	blood liver kidney and/or bladder eyes	Not classified	Rat	NOAEL 0.18 mg/l	90 days
VINYLCAPROLACTAM	Ingestion	liver	Not classified	Rat	NOAEL 260 mg/kg/day	3 months
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLINE FREE	Inhalation	respiratory system silicosis	Not classified	Human	NOAEL Not available	occupational exposure
COPPER PHTHALOCYANINE BLUE	Ingestion	endocrine system hematopoietic system respiratory system	Not classified	Rat	NOAEL 1,000 mg/kg/day	28 days
COPPER PHTHALOCYANINE BLUE	Ingestion	kidney and/or bladder	Not classified	Multiple animal species	NOAEL Not available	not available
1-PROPANONE, 2- METHYL-1-[4-	Ingestion	peripheral nervous system eyes	Some positive data exist, but the data are not sufficient for	Rat	NOAEL 75 mg/kg/day	90 days

(METHYLTHIO)PHENY L]-2-(4- MORPHOLINYL)-			classification			
1-BUTANONE, 2- (DIMETHYLAMINO)-1- [4-(4- MORPHOLINYL)PHENY L]-2- (PHENYLMETHYL)-	Ingestion	endocrine system hematopoietic system liver kidney and/or bladder	Not classified	Rat	NOAEL 500 mg/kg/day	28 days
OCTAMETHYLCYCLOT ETRASILOXANE	Dermal	hematopoietic system	Not classified	Rabbit	NOAEL 960 mg/kg/day	3 weeks
OCTAMETHYLCYCLOT ETRASILOXANE	Inhalation	liver	Not classified	Rat	NOAEL 8.5 mg/l	13 weeks
OCTAMETHYLCYCLOT ETRASILOXANE	Inhalation	endocrine system immune system kidney and/or bladder	Not classified	Rat	NOAEL 8.5 mg/l	2 generation
OCTAMETHYLCYCLOT ETRASILOXANE	Inhalation	hematopoietic system	Not classified	Rat	NOAEL 8.5 mg/l	13 weeks
OCTAMETHYLCYCLOT ETRASILOXANE	Ingestion	liver	Not classified	Rat	NOAEL 1,600 mg/kg/day	2 weeks

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labeling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

Acute aquatic hazard:

GHS Acute 2: Toxic to aquatic life.

Chronic aquatic hazard:

GHS Chronic 2: Toxic to aquatic life with long lasting effects

No product test data available

Material	Cas #	Organism	Type	Exposure	Test Endpoint	Test Result
PHENOXY	48145-04-6	Water flea	Experimental	48 hours	Effect	1.21 mg/l
ETHYL					Concentration	
ACRYLATE					50%	
PHENOXY	48145-04-6	Green algae	Experimental	72 hours	Effect	4.4 mg/l
ETHYL					Concentration	
ACRYLATE					50%	
PHENOXY	48145-04-6	Golden Orfe	Experimental	96 hours	Lethal	10 mg/l
ETHYL					Concentration	
ACRYLATE					50%	
PHENOXY	48145-04-6	Green algae	Experimental	72 hours	Effect	0.71 mg/l
ETHYL					Concentration	

ACRYLATE		T		1	10%	
METHACRYL	Trade Secret		Data not		10/0	
ATE	Trade Secret		available or			
POLYMER			insufficient for			
I OE I MER			classification			
VINYLCAPR	2235-00-9	Green algae	Experimental	72 hours	Effect	>100 mg/l
OLACTAM	2233 00)	Green argae	Experimental	/2 110013	Concentration	2 100 mg/1
OE/ICI/IIVI					50%	
VINYLCAPR	2235-00-9	Zebra Fish	Experimental	96 hours	Lethal	307 mg/l
OLACTAM	2233 00)	Zeora i isii	Experimental) ilouis	Concentration	Joy mg/i
OE/ICI/IIII					50%	
VINYLCAPR	2235-00-9	Water flea	Experimental	48 hours	Effect	>100 mg/l
OLACTAM			zp erimentur	10 110 415	Concentration	1 0 0 mg/1
02.1011111					50%	
VINYLCAPR	2235-00-9	Green algae	Experimental	72 hours	No obs Effect	25 mg/l
OLACTAM		Green argue	Emperimentar	/2 Hours	Conc	23 mg/1
ALIPHATIC	Trade Secret		Data not			
URETHANE			available or			
ACRYLATE			insufficient for			
			classification			
1-	71868-10-5	Zebra Fish	Experimental	96 hours	Lethal	9 mg/l
PROPANONE,					Concentration	
2-METHYL-1-					50%	
[4-						
(METHYLTHI						
O)PHENYL]-						
2-(4-						
MORPHOLIN						
YL)-						
1-	71868-10-5	Green algae	Experimental	72 hours	Effect	1.6 mg/l
PROPANONE,					Concentration	
2-METHYL-1-					50%	
[4-						
(METHYLTHI						
O)PHENYL]-						
2-(4-						
MORPHOLIN						
YL)-						
1-	71868-10-5	Water flea	Experimental	24 hours	Effect	15.3 mg/l
PROPANONE,					Concentration	
2-METHYL-1-					50%	
[4-						
(METHYLTHI						
O)PHENYL]-						
2-(4-						
MORPHOLIN						
YL)-			<u> </u>		<u> </u>	
1-	71868-10-5	Green algae	Experimental	72 hours	Effect	0.92 mg/l
PROPANONE,					Concentration	
2-METHYL-1-					10%	
[4-						
(METHYLTHI						
O)PHENYL]-						
2-(4-						
MORPHOLIN						

YL)-		1			Ī	
1- PROPANONE, 2-METHYL-1- [4- (METHYLTHI O)PHENYL]- 2-(4- MORPHOLIN	71868-10-5	Water flea	Experimental	21 days	Effect Concentration 10%	1.75 mg/l
YL)- 1- BUTANONE, 2- (DIMETHYLA MINO)-1-[4- (4- MORPHOLIN YL)PHENYL]- 2- (PHENYLME	119313-12-1	Green Algae	Experimental	72 hours	Effect Concentration 50%	>0.5 mg/l
THYL)- 1- BUTANONE, 2- (DIMETHYLA MINO)-1-[4- (4- MORPHOLIN YL)PHENYL]- 2- (PHENYLME THYL)-	119313-12-1	Zebra Fish	Experimental	96 hours	Lethal Concentration 50%	0.46 mg/l
1- BUTANONE, 2- (DIMETHYLA MINO)-1-[4- (4- MORPHOLIN YL)PHENYL]- 2- (PHENYLME THYL)-	119313-12-1	Green Algae	Experimental	72 hours	No obs Effect Conc	0.5 mg/l
2- PHENOXYET HANOL	122-99-6	Fathead Minnow	Experimental	96 hours	Lethal Concentration 50%	344 mg/l
2- PHENOXYET HANOL	122-99-6	Scud	Experimental	96 hours	Lethal Concentration 50%	357 mg/l
2- PHENOXYET HANOL	122-99-6	Water flea	Experimental	48 hours	Lethal Concentration 50%	488 mg/l
2- PHENOXYET HANOL	122-99-6	Green algae	Experimental	72 hours	Effect Concentration 50%	>500 mg/l

COPPER	147-14-8	Rainbow Trout	Experimental	96 hours	Lethal	355.6 mg/l
PHTHALOCY			1		Concentration	
ANINE BLUE					50%	
COPPER	147-14-8	Green algae	Estimated	72 hours	Effect	>100 mg/l
PHTHALOCY					Concentration	8
ANINE BLUE					50%	
COPPER	147-14-8	Water flea	Estimated	48 hours	Effect	>500 mg/l
PHTHALOCY					Concentration	
ANINE BLUE					50%	
COPPER	147-14-8	Water flea	Estimated	21 days	No obs Effect	>=1 mg/l
PHTHALOCY					Conc	
ANINE BLUE						
COPPER	147-14-8	Green algae	Estimated	72 hours	Effect	>100 mg/l
PHTHALOCY					Concentration	
ANINE BLUE					10%	
DIETHYLENE	7328-17-8	Green Algae	Experimental	72 hours	Effect	3.2 mg/l
GLYCOL					Concentration	
ETHYL					50%	
ETHER						
ACRYLATE						
DIETHYLENE	7328-17-8	Golden Orfe	Experimental	96 hours	Lethal	10 mg/l
GLYCOL			1		Concentration	
ETHYL					50%	
ETHER						
ACRYLATE						
DIETHYLENE	7328-17-8	Water flea	Experimental	48 hours	Effect	10.56 mg/l
GLYCOL			1		Concentration	
ETHYL					50%	
ETHER						
ACRYLATE						
SYNTHETIC	112945-52-5	Water flea	Experimental	24 hours	Effect	>100 mg/l
AMORPHOUS					Concentration	
SILICA,					50%	
FUMED,						
CRYSTALLIN						
E FREE						
	112945-52-5	Zebra Fish	Experimental	96 hours	Lethal	>100 mg/l
AMORPHOUS					Concentration	
SILICA,					50%	
FUMED,						
CRYSTALLIN						
E FREE						
SYNTHETIC	112945-52-5	Green Algae	Experimental	72 hours	Effect	>100 mg/l
AMORPHOUS					Concentration	
SILICA,					50%	
FUMED,						
CRYSTALLIN						
E FREE	112045 52 5	Cmaar, A1:	E-maging (1	72 1	No also Ecc. 4	(O ~/1
SYNTHETIC	112945-52-5	Green Algae	Experimental	72 hours	No obs Effect	60 mg/l
AMORPHOUS					Conc	
SILICA,						
FUMED,						
CRYSTALLIN						
E FREE	52400 04 1	Casan alses	E	72 h	E.C. at	12.2 /1
.ALPHA.,.ALP	J24U8-84-1	Green algae	Experimental	72 hours	Effect	12.2 mg/l

HA.',.ALPHA."					Concentration	
-1,2,3-					50%	
PROPANETRI						
YLTRIS[POL						
YPROPYLEN						
E GLYCOL						
ACRYLATE]						
.ALPHA.,.ALP	52408-84-1	Zebra Fish	Experimental	96 hours	Lethal	5.74 mg/l
HA.',.ALPHA."			1		Concentration	
-1,2,3-					50%	
PROPANETRI						
YLTRIS[POL						
YPROPŸLEN						
E GLYCOL						
ACRYLATE]						
.ALPHA.,.ALP	52408-84-1	Water flea	Experimental	48 hours	Effect	91.4 mg/l
HA.',.ALPHA."					Concentration	
-1,2,3-					50%	
PROPANETRI						
YLTRIS[POL						
YPROPYLEN						
E GLYCOL						
ACRYLATE]						
.ALPHA.,.ALP	52408-84-1	Green algae	Experimental	72 hours	No obs Effect	0.921 mg/l
HA.',.ALPHA."			1		Conc	
-1,2,3-						
PROPANETRI						
YLTRIS[POL						
YPROPŸLEN						
E GLYCOL						
ACRYLATE]						
OCTAMETHY	556-67-2	Rainbow Trout	Experimental	93 days	No obs Effect	0.0044 mg/l
LCYCLOTET			F		Conc	8
RASILOXAN						
E						
OCTAMETHY	556-67-2	Water flea	Experimental	21 days	No obs Effect	0.0079 mg/l
LCYCLOTET			-r		Conc	
RASILOXAN						
E						
TMPEOTA	28961-43-5		Data not			
11.111 20171	20,01 13 3		available or			
			insufficient for			
			classification			
		I	Ciassification	<u> </u>	L	

12.2. Persistence and degradability

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
PHENOXY	48145-04-6	Estimated		Photolytic half-	9.7 hours (t	Other methods
ETHYL		Photolysis		life (in air)	1/2)	
ACRYLATE						
PHENOXY	48145-04-6	Experimental	28 days	Biological	22.3 %	OECD 301D - Closed
ETHYL		Biodegradation		Oxygen	BOD/ThBOD	Bottle Test
ACRYLATE				Demand		
METHACRYL	Trade Secret	Data not			N/A	
ATE		availbl-				

POLYMER		insufficient				
VINYLCAPR	2235-00-9	Experimental	28 days	Dissolv.	30-40 %	OECD 301A - DOC
OLACTAM	12233-00-7	Biodegradation	120 days	Organic Carbon Deplet	weight	Die Away Test
ALIPHATIC URETHANE ACRYLATE	Trade Secret	Data not availbl- insufficient			N/A	
1- PROPANONE, 2-METHYL-1- [4- (METHYLTHI O)PHENYL]- 2-(4- MORPHOLIN YL)-	71868-10-5	Experimental Biodegradation	28 days	Carbon dioxide evolution	-	OECD 301B - Mod. Sturm or CO2
1- BUTANONE, 2- (DIMETHYLA MINO)-1-[4- (4- MORPHOLIN YL)PHENYL]- 2- (PHENYLME THYL)-	119313-12-1	Experimental Biodegradation	28 days	Dissolv. Organic Carbon Deplet	3 % weight	Other methods
2- PHENOXYET HANOL	122-99-6	Experimental Biodegradation	28 days	Biological Oxygen Demand	90 % weight	OECD 301F - Manometric Respiro
COPPER PHTHALOCY ANINE BLUE	147-14-8	Experimental Biodegradation	28 days	Biological Oxygen Demand	<1 % weight	OECD 301F - Manometric Respiro
DIETHYLENE GLYCOL ETHYL ETHER ACRYLATE	7328-17-8	Experimental Biodegradation	28 days	Carbon dioxide evolution	evolution/THC O2 evolution	OECD 301B - Mod. Sturm or CO2
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLIN E FREE	112945-52-5	Data not availbl- insufficient			N/A	
ALPHA.,.ALP HA.',.ALPHA." -1,2,3- PROPANETRI YLTRIS[POL YPROPYLEN E GLYCOL ACRYLATE]	52408-84-1	Experimental Biodegradation	28 days	Carbon dioxide evolution	weight	OECD 301B - Mod. Sturm or CO2
OCTAMETHY LCYCLOTET RASILOXAN	556-67-2	Experimental Photolysis		Photolytic half- life (in air)	31 days (t 1/2)	Other methods

Е						
OCTAMETHY	556-67-2	Experimental		Hydrolytic	69.3-144 hours	Other methods
LCYCLOTET		Hydrolysis		half-life	(t 1/2)	
RASILOXAN						
Е						
OCTAMETHY	556-67-2	Experimental	28 days	Carbon dioxide	3.7 % weight	OECD 310 CO2
LCYCLOTET		Biodegradation		evolution		Headspace
RASILOXAN						
Е						
TMPEOTA	28961-43-5	Experimental	28 days	Carbon dioxide	58-61 %	OECD 301B - Mod.
		Biodegradation		evolution	weight	Sturm or CO2

12.3. Bioaccumulative potential

CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
48145-04-6	Experimental		Log of	2.58	Other methods
	Bioconcentrati		Octanol/H2O		
	on		part. coeff		
Trade Secret	Data not	N/A	N/A	N/A	N/A
	available or				
	insufficient for				
	classification				
2235-00-9	Experimental		Log of	1.2	Other methods
	Bioconcentrati		Octanol/H2O		
	on		part. coeff		
Trade Secret	Data not	N/A	N/A	N/A	N/A
	available or				
	insufficient for				
	classification				
71868-10-5	Experimental	56 days	Bioaccumulatio	<10	Other methods
	BCF - Other		n Factor		
119313-12-1	Experimental		Log of	2.91	Other methods
	Bioconcentrati		Octanol/H2O		
	on		part. coeff		
122-99-6				1.16	Other methods
	Bioconcentrati				
	on		part. coeff		
147-14-8		42 days		<3.6	OECD 305E-Bioaccum
	BCF-Carp		n Factor		Fl-thru fis
	48145-04-6 Trade Secret 2235-00-9 Trade Secret 71868-10-5	48145-04-6 Experimental Bioconcentration Trade Secret Data not available or insufficient for classification Experimental Bioconcentration Trade Secret Data not available or insufficient for classification 71868-10-5 Experimental Bioconcentration Experimental Bioconcentration Experimental Bioconcentration Experimental Bioconcentration Experimental Bioconcentration Experimental Bioconcentration Experimental Bioconcentration	Experimental Bioconcentration Bioconcentration Bioconcentration Bioconcentration Bioconcentration Bioconcentration Classification Experimental Bioconcentration Bioconcentration Bioconcentration Bioconcentration Bioconcentration Data not available or insufficient for classification S6 days BCF - Other S6 days BCF - Other Bioconcentration Data not available or insufficient for classification S6 days BCF - Other S6 days BCF - Other S6 days Bioconcentration Data not available or insufficient for classification Classification Classification Data not available or insufficient for classif	Experimental Bioconcentration Data not available or insufficient for classification Experimental Bioconcentration Data not available or insufficient for classification Experimental Bioconcentration Data not available or insufficient for classification	Experimental Bioconcentration

DIETHYLENE GLYCOL ETHYL ETHER ACRYLATE	7328-17-8	Experimental Bioconcentrati on		Log of Octanol/H2O part. coeff	1.105	Other methods
SYNTHETIC AMORPHOUS SILICA, FUMED, CRYSTALLIN E FREE	112945-52-5	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
ALPHA.,.ALP HA.',.ALPHA." -1,2,3- PROPANETRI YLTRIS[POL YPROPYLEN E GLYCOL ACRYLATE]	52408-84-1	Experimental Bioconcentrati on		Log of Octanol/H2O part. coeff	2.52	Other methods
OCTAMETHY LCYCLOTET RASILOXAN E	556-67-2	Experimental BCF - Fathead Mi	28 days	Bioaccumulatio n Factor	12400	Other methods
TMPEOTA	28961-43-5	Experimental Bioconcentrati on		Log of Octanol/H2O part. coeff	2.89	Other methods

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available

SECTION 13: Disposal considerations

13.1. Disposal methods

According to the Environmental Quality (Scheduled Wastes) Regulations 2005, scheduled waste has to be sent to a prescribed premise for recycling, treatment or disposal. Please approach Kualiti Alam for proper schedule waste classification and disposal.

SECTION 14: Transport Information

Not hazardous for transportation.

Marine Transport (IMDG)

UN Number: None assigned.

Proper Shipping Name: None assigned.
Technical Name: None assigned.
Hazard Class/Division: None assigned.
Subsidiary Risk: None assigned.
Packing Group: None assigned.
Limited Quantity: None assigned.

Marine Pollutant: None assigned.

Marine Pollutant Technical Name: None assigned.

Other Dangerous Goods Descriptions:

None assigned.

Air Transport (IATA)

UN Number: None assigned.

Proper Shipping Name: None assigned. Technical Name: None assigned. Hazard Class/Division: None assigned. Subsidiary Risk: None assigned. Packing Group: None assigned. Limited Quantity: None assigned.

Marine Pollutant: None assigned.

Marine Pollutant Technical Name: None assigned.

Other Dangerous Goods Descriptions:

None assigned.

Transportation classifications are provided as a customer service. As for shipping, YOU remain responsible for complying with all applicable laws and regulations, including proper transportation classification and packaging. 3M's transportation classifications are based on product formulation, packaging, 3M policies and 3M's understanding of applicable current regulations. 3M does not guarantee the accuracy of this classification information. This information applies only to transportation classification and not the packaging, labeling or marking requirements. The above information is only for reference. If you are shipping by air or ocean, YOU are advised to check & meet applicable regulatory requirements.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Global inventory status

Contact 3M for more information. The components of this product are in compliance with the chemical notification requirements of TSCA. This product complies with Measures on Environmental Management of New Chemical Substances. All ingredients are listed on or exempt from on China IECSC inventory.

SECTION 16: Other information

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

3M Malaysia SDSs are available at www.3M.com.my