

Safety Data Sheet

Copyright, 2021, 3M Company.

All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document Group:
 19-6313-1
 Version Number:
 4.00

 Issue Date:
 12/02/2021
 Supercedes Date:
 13/07/2017

This Safety Data Sheet has been prepared in accordance with the Malaysia Occupational Safety and Health (Chemical Classification, Labelling and Safety Data Sheets) Regulations 2013.

SECTION 1: Identification

1.1. Product identifier

3MTM Adhesion Promoter 4298

Product Identification Numbers

70-0706-9842-1

1.2. Recommended use and restrictions on use

Recommended use

Automotive, Adhesion Promoter absorbed on a sponge for use with attachment tapes

1.3. Supplier's details

ADDRESS: 3M Malaysia Sdn. Bhd., Level 8, Block F, Oasis Square, No.2, Jalan PJU 1A/7A, Ara Damansara 47301

Petaling, Jaya, Selangor

Telephone: 03-7884 2888

E Mail: 3mmyehsr@mmm.com Website: www.3M.com.my

1.4. Emergency telephone number

+60 03-7884 2888

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture

Flammable Liquid: Category 2.

Serious Eye Damage/Irritation: Category 2.

Skin Sensitizer: Category 1. Carcinogenicity: Category 2.

Specific Target Organ Toxicity (single exposure): Category 1. Specific Target Organ Toxicity (repeated exposure): Category 1.

Acute Aquatic Toxicity: Category 1. Chronic Aquatic Toxicity: Category 3.

2.2. Label elements

Signal word

Danger

Symbols

Flame | Exclamation mark | Health Hazard | Environment |

Pictograms

Hazard Statements

H225 Highly flammable liquid and vapor.

H319 Causes serious eye irritation.
H317 May cause an allergic skin reaction.
H351 Suspected of causing cancer.

H370 Causes damage to organs:

sensory organs

H372 Causes damage to organs through prolonged or repeated exposure:

nervous system

H373 May cause damage to organs through prolonged or repeated exposure:

sensory organs

H400 Very toxic to aquatic life.

H412 Harmful to aquatic life with long lasting effects.

Precautionary statements

General:

P102 Keep out of reach of children.

P101 If medical advice is needed, have product container or label at hand.

Prevention:

P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking.

P233 Keep container tightly closed.

P260 Do not breathe dust/fume/gas/mist/vapors/spray.
P280B Wear protective gloves and eye/face protection.
P281 Use personal protective equipment as required.

P273 Avoid release to the environment.

Response:

P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses, if present and easy to do. Continue rinsing.

P333 + P313 If skin irritation or rash occurs: Get medical advice/attention. P307 + P311 IF exposed: Call a POISON CENTER or doctor/physician.

P370 + P378G In case of fire: Use a fire fighting agent suitable for flammable liquids such as dry

chemical or carbon dioxide to extinguish.

Storage:

P403 + P235 Store in a well-ventilated place. Keep cool.

P405 Store locked up.

Disposal:

P501

Dispose of contents/container in accordance with applicable local/regional/national/international regulations.

2.3. Other hazards

May cause drowsiness or dizziness.

SECTION 3: Composition/information on ingredients

This material is a mixture.

Ingredient	C.A.S. No.	% by Wt	
CYCLOHEXANE	110-82-7	45 - 50	
XYLENE	1330-20-7	< 35	
ETHYLBENZENE	100-41-4	< 11	
ETHYL ALCOHOL	64-17-5	5 - 10	
CHLORINATED RUBBER	68609-36-9	1 - 5	
Isopropyl Alcohol	67-63-0	< 5	
O-XYLENE	95-47-6	< 5	
ACRYLATE POLYMER	Trade Secret	1 - 5	
ETHYL ACETATE	141-78-6	< 4	
4,4'-isopropylidenediphenol-	25068-38-6	< 1	
epichlorohydrin polymer			
Cumene	98-82-8	< 1	
METHYL ALCOHOL	67-56-1	< 0.5	
TOLUENE	108-88-3	< 0.3	
MALEIC ANHYDRIDE	108-31-6	< 0.05	

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

Remove person to fresh air. If you feel unwell, get medical attention.

Skin Contact:

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

Eve Contact:

Immediately flush with large amounts of water for at least 15 minutes. Remove contact lenses if easy to do. Continue rinsing. Immediately get medical attention.

If Swallowed:

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

Allergic skin reaction (redness, swelling, blistering, and itching). Central nervous system depression (headache, dizziness, drowsiness, incoordination, nausea, slurred speech, giddiness, and unconsciousness). Target organ effects. See Section 11 for additional details. Target organ effects following prolonged or repeated exposure. See Section 11 for additional details.

4.3. Indication of any immediate medical attention and special treatment required Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for flammable liquids such as dry chemical or carbon dioxide to extinguish.

5.2. Special hazards arising from the substance or mixture

Closed containers exposed to heat from fire may build pressure and explode.

Hazardous Decomposition or By-Products

<u>Substance</u>	<u>Condition</u>
Aldehydes	During Combustion
Formaldehyde	During Combustion
Carbon monoxide	During Combustion
Carbon dioxide	During Combustion
Hydrogen Chloride	During Combustion

5.3. Special protective actions for fire-fighters

Water may not effectively extinguish fire; however, it should be used to keep fire-exposed containers and surfaces cool and prevent explosive rupture. Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Use only non-sparking tools. Ventilate the area with fresh air. Warning! A motor could be an ignition source and could cause flammable gases or vapors in the spill area to burn or explode. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Contain spill. Cover spill area with a fire extinguishing foam that is resistant to polar solvents. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible using non-sparking tools. Place in a metal container approved for transportation by appropriate authorities. Clean up residue with an appropriate solvent selected by a qualified and authorized person. Ventilate the area with fresh air. Read and follow safety precautions on the solvent label and SDS. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

For industrial/occupational use only. Not for consumer sale or use. Do not handle until all safety precautions have been read and understood. Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Use only non-sparking tools. Take precautionary measures against static discharge. Do not breathe dust/fume/gas/mist/vapors/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Avoid contact with oxidizing agents (eg. chlorine, chromic acid etc.) Wear low static or properly grounded shoes. Use personal protective equipment (gloves, respirators, etc.) as required. To minimize the risk of ignition, determine applicable electrical classifications for the process using this product and select specific local exhaust ventilation equipment to avoid flammable vapor accumulation. Ground/bond container and receiving equipment if there is potential for static electricity accumulation during transfer.

7.2. Conditions for safe storage including any incompatibilities

Store in a well-ventilated place. Keep cool. Keep container tightly closed. Store away from heat. Store away from acids. Store away from oxidizing agents.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	C.A.S. No.	Agency	Limit type	Additional Comments
ETHYLBENZENE	100-41-4	ACGIH	TWA:20 ppm	A3: Confirmed animal
				carcin.
ETHYLBENZENE	100-41-4	Malaysia OELs	TWA(8 hours):434	
			mg/m3(100 ppm)	
MALEIC ANHYDRIDE	108-31-6	ACGIH	TWA(inhalable fraction and	A4: Not class. as human
			vapor):0.01 mg/m3;TWA:0.01	carcin,
			mg/m3	Dermal/Respiratory
				Sensitizer, Sensitizer
MALEIC ANHYDRIDE	108-31-6	Malaysia OELs	TWA(8 hours):1 mg/m3(0.25	
			ppm)	
TOLUENE	108-88-3	ACGIH	TWA:20 ppm	A4: Not class. as human
				carcin, Ototoxicant
TOLUENE	108-88-3	Malaysia OELs	TWA(8 hours):188 mg/m3(50	SKIN
			ppm)	
CYCLOHEXANE	110-82-7	ACGIH	TWA:100 ppm	
CYCLOHEXANE	110-82-7	Malaysia OELs	TWA(8 hours):1030	
			mg/m3(300 ppm)	
XYLENE	1330-20-7	ACGIH	TWA:100 ppm;STEL:150 ppm	A4: Not class. as human
				carcin
XYLENE	1330-20-7	Malaysia OELs	TWA(8 hours):434	
			mg/m3(100 ppm)	
ETHYL ACETATE	141-78-6	ACGIH	TWA:400 ppm	
ETHYL ACETATE	141-78-6	Malaysia OELs	TWA(8 hours):1440	
			mg/m3(400 ppm)	
ETHYL ALCOHOL	64-17-5	ACGIH	STEL:1000 ppm	A3: Confirmed animal
				carcin.
ETHYL ALCOHOL	64-17-5	Malaysia OELs	TWA(8 hours):1880	
			mg/m3(1000 ppm)	
METHYL ALCOHOL	67-56-1	ACGIH		Danger of cutaneous
				absorption
METHYL ALCOHOL	67-56-1	Malaysia OELs	TWA(8 hours):262	SKIN
			mg/m3(200 ppm)	
Isopropyl Alcohol	67-63-0	ACGIH	TWA:200 ppm;STEL:400 ppm	A4: Not class. as human
				carcin
Isopropyl Alcohol	67-63-0	Malaysia OELs	TWA(8 hours):983	
			mg/m3(400 ppm)	
O-XYLENE	95-47-6	ACGIH	TWA:100 ppm;STEL:150 ppm	A4: Not class. as human
				carcin
O-XYLENE	95-47-6	Malaysia OELs	TWA(8 hours):434	
			mg/m3(100 ppm)	
Cumene	98-82-8	ACGIH	TWA:50 ppm	
Cumene	98-82-8	Malaysia OELs	TWA(8 hours):246 mg/m3(50	SKIN

)	
	(ppm)	

ACGIH: American Conference of Governmental Industrial Hygienists

CMRG: Chemical Manufacturer's Recommended Guidelines

Malaysia OELs: Malaysia. Occupational Safety and Health (Use and Standards of Exposure of Chemicals Hazardous to Health) Regulations

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapors/spray. If ventilation is not adequate, use respiratory protection equipment. Use explosion-proof ventilation equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Indirect Vented Goggles

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing. Note: Nitrile gloves may be worn over polymer laminate gloves to improve dexterity. Gloves made from the following material(s) are recommended: Polymer laminate

If this product is used in a manner that presents a higher potential for exposure (eg. spraying, high splash potential etc.), then use of protective coveralls may be necessary. Select and use body protection to prevent contact based on the results of an exposure assessment. The following protective clothing material(s) are recommended: Apron - polymer laminate

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapors and particulates Half facepiece or full facepiece supplied-air respirator

For questions about suitability for a specific application, consult with your respirator manufacturer.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state	Liquid
Specific Physical Form:	Sponge holding approximately 2 milliliters of liquid.
Color	Yellow
Odor	Solvent
Odor threshold	No Data Available
рН	4.4 - 5 [Test Method: Tested per ASTM protocol]
	[Details:@23°C]

Melting point/Freezing point	Not Applicable		
Boiling point/Initial boiling point/Boiling range	73.1 °C [Test Method:Tested per ASTM protocol]		
	[Details:@760mmHg]		
Flash Point	1.1 °C [Test Method:SETAFLASH]		
Evaporation rate	6.4 [Test Method: Estimated] [Ref Std: XYLENE=1]		
Flammability (solid, gas)	Not Applicable		
Flammable Limits(LEL)	1 % [Test Method: Estimated]		
Flammable Limits(UEL)	6 % [Test Method: Estimated]		
Vapor Pressure	11,092.4 Pa [@ 20 °C] [Test Method: Tested per ASTM protocol]		
Vapor Density and/or Relative Vapor Density	1.7 [Test Method: Estimated] [Ref Std: AIR=1]		
Density	0.82 g/ml		
Relative Density	0.82 [Ref Std:WATER=1]		
Water solubility	10 %		
Solubility- non-water	No Data Available		
Partition coefficient: n-octanol/ water	No Data Available		
Autoignition temperature	430 °C		
Decomposition temperature	No Data Available		
Viscosity/Kinematic Viscosity	<=25 mPa-s [@ 20 °C]		
Volatile Organic Compounds	<=781 g/l [Test Method:calculated SCAQMD rule 443.1]		
	[Details: Calculated]		
Percent volatile	Approximately 95 %		
VOC Less H2O & Exempt Solvents	<=781 g/l [Test Method:calculated SCAQMD rule 443.1]		
	[Details:Calculated]		
Molecular weight	No Data Available		

Nanoparticles

This material does not contain nanoparticles.

SECTION 10: Stability and reactivity

10.1. Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section.

10.2. Chemical stability

Stable.

10.3. Possibility of hazardous reactions

Hazardous polymerization will not occur.

10.4. Conditions to avoid

Heat

Sparks and/or flames

10.5. Incompatible materials

Strong acids

Strong oxidizing agents

10.6. Hazardous decomposition products

Substance
None known.

Condition

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labeling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

May be harmful if inhaled.

Respiratory Tract Irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain.

May cause additional health effects (see below).

Skin Contact:

May be harmful in contact with skin.

Mild Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, and dryness. Allergic Skin Reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching.

May cause additional health effects (see below).

Eye Contact:

Severe Eye Irritation: Signs/symptoms may include significant redness, swelling, pain, tearing, cloudy appearance of the cornea, and impaired vision.

Ingestion:

Gastrointestinal Irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhea.

May cause additional health effects (see below).

Additional Health Effects:

Single exposure may cause target organ effects:

Auditory Effects: Signs/symptoms may include hearing impairment, balance dysfunction and ringing in the ears.

Central Nervous System (CNS) Depression: Signs/symptoms may include headache, dizziness, drowsiness, incoordination, nausea, slowed reaction time, slurred speech, giddiness, and unconsciousness.

Prolonged or repeated exposure may cause target organ effects:

Auditory Effects: Signs/symptoms may include hearing impairment, balance dysfunction and ringing in the ears.

Neurological Effects: Signs/symptoms may include personality changes, lack of coordination, sensory loss, tingling or numbness of the extremities, weakness, tremors, and/or changes in blood pressure and heart rate.

Reproductive/Developmental Toxicity:

Contains a chemical or chemicals which can cause birth defects or other reproductive harm.

Carcinogenicity:

Contains a chemical or chemicals which can cause cancer.

Additional Information:

This product contains ethanol. Alcoholic beverages and ethanol in alcoholic beverages have been classified by the International Agency for Research on Cancer as carcinogenic to humans. There are also data associating human consumption of alcoholic beverages with developmental toxicity and liver toxicity. Exposure to ethanol during the foreseeable use of this product is not expected to cause cancer, developmental toxicity, or liver toxicity.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Acute Toxicity		Ια .	Lv.
Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE2,000 - 5,000 mg/kg
Overall product	Inhalation- Vapor(4 hr)		No data available; calculated ATE20 - 50 mg/l
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
CYCLOHEXANE	Dermal	Rat	LD50 > 2,000 mg/kg
CYCLOHEXANE	Inhalation- Vapor (4 hours)	Rat	LC50 > 32.9 mg/l
CYCLOHEXANE	Ingestion	Rat	LD50 6,200 mg/kg
XYLENE	Dermal	Rabbit	LD50 > 4,200 mg/kg
XYLENE	Inhalation- Vapor (4 hours)	Rat	LC50 29 mg/l
XYLENE	Ingestion	Rat	LD50 3,523 mg/kg
ETHYLBENZENE	Dermal	Rabbit	LD50 15,433 mg/kg
ETHYLBENZENE	Inhalation- Vapor (4 hours)	Rat	LC50 17.4 mg/l
ETHYLBENZENE	Ingestion	Rat	LD50 4,769 mg/kg
ETHYL ALCOHOL	Dermal	Rabbit	LD50 > 15,800 mg/kg
ETHYL ALCOHOL	Inhalation- Vapor (4 hours)	Rat	LC50 124.7 mg/l
ETHYL ALCOHOL	Ingestion	Rat	LD50 17,800 mg/kg
O-XYLENE	Dermal	Rabbit	LD50 > 4,200 mg/kg
O-XYLENE	Inhalation- Vapor (4 hours)	Rat	LC50 29 mg/l
O-XYLENE	Ingestion	Rat	LD50 3,523 mg/kg
ETHYL ACETATE	Dermal	Rabbit	LD50 > 18,000 mg/kg
ETHYL ACETATE	Inhalation- Vapor (4 hours)	Rat	LC50 70.5 mg/l
ETHYL ACETATE	Ingestion	Rat	LD50 5,620 mg/kg
CHLORINATED RUBBER	Dermal	Guinea pig	LD50 > 1,000 mg/kg
CHLORINATED RUBBER	Ingestion	Rat	LD50 > 3,200 mg/kg
Isopropyl Alcohol	Dermal	Rabbit	LD50 12,870 mg/kg
Isopropyl Alcohol	Inhalation- Vapor (4 hours)	Rat	LC50 72.6 mg/l
Isopropyl Alcohol	Ingestion	Rat	LD50 4,710 mg/kg
METHYL ALCOHOL	Dermal		LD50 estimated to be 1,000 - 2,000 mg/kg
METHYL ALCOHOL	Inhalation- Vapor		LC50 estimated to be 10 - 20 mg/l
METHYL ALCOHOL	Ingestion		LD50 estimated to be 50 - 300 mg/kg
4,4'-isopropylidenediphenol-epichlorohydrin polymer	Dermal	Rat	LD50 > 1,600 mg/kg
4,4'-isopropylidenediphenol-epichlorohydrin polymer	Ingestion	Rat	LD50 > 1,000 mg/kg
TOLUENE	Dermal	Rat	LD50 12,000 mg/kg

TOLUENE	Inhalation-	Rat	LC50 30 mg/l
	Vapor (4		
	hours)		
TOLUENE	Ingestion	Rat	LD50 5,550 mg/kg
Cumene	Dermal	Rabbit	LD50 > 3,160 mg/kg
Cumene	Inhalation-	Rat	LC50 39.4 mg/l
	Vapor (4		
	hours)		
Cumene	Ingestion	Rat	LD50 1,400 mg/kg
MALEIC ANHYDRIDE	Dermal	Rabbit	LD50 2,620 mg/kg
MALEIC ANHYDRIDE	Ingestion	Rat	LD50 1,030 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
CYCLOHEXANE	Rabbit	Mild irritant
XYLENE	Rabbit	Mild irritant
ETHYLBENZENE	Rabbit	Mild irritant
ETHYL ALCOHOL	Rabbit	No significant irritation
O-XYLENE	Rabbit	Mild irritant
ETHYL ACETATE	Rabbit	Minimal irritation
CHLORINATED RUBBER	Guinea	No significant irritation
	pig	
Isopropyl Alcohol	Multiple	No significant irritation
	animal	
	species	
METHYL ALCOHOL	Rabbit	Mild irritant
4,4'-isopropylidenediphenol-epichlorohydrin polymer	Rabbit	Mild irritant
TOLUENE	Rabbit	Irritant
Cumene	Rabbit	Minimal irritation
MALEIC ANHYDRIDE	Human	Corrosive
	and	
	animal	

Serious Eye Damage/Irritation

Name	Species	Value
CYCLOHEXANE	Rabbit	Mild irritant
XYLENE	Rabbit	Mild irritant
ETHYLBENZENE	Rabbit	Moderate irritant
ETHYL ALCOHOL	Rabbit	Severe irritant
O-XYLENE	Rabbit	Mild irritant
ETHYL ACETATE	Rabbit	Mild irritant
CHLORINATED RUBBER	Professio	Mild irritant
	nal	
	judgemen	
	t	
Isopropyl Alcohol	Rabbit	Severe irritant
METHYL ALCOHOL	Rabbit	Moderate irritant
4,4'-isopropylidenediphenol-epichlorohydrin polymer	Rabbit	Moderate irritant
TOLUENE	Rabbit	Moderate irritant
Cumene	Rabbit	Mild irritant
MALEIC ANHYDRIDE	Rabbit	Corrosive

Sensitization:

Skin Sensitization

Name	Species	Value
ETHYLBENZENE	Human	Not classified
ETHYL ALCOHOL	Human	Not classified
ETHYL ACETATE	Guinea	Not classified

	pig	
Isopropyl Alcohol	Guinea	Not classified
	pig	
METHYL ALCOHOL	Guinea	Not classified
	pig	
4,4'-isopropylidenediphenol-epichlorohydrin polymer	Human	Sensitizing
	and	
	animal	
TOLUENE	Guinea	Not classified
	pig	
Cumene	Guinea	Not classified
	pig	
MALEIC ANHYDRIDE	Multiple	Sensitizing
	animal	
	species	

Respiratory Sensitization

Name	Species	Value
4,4'-isopropylidenediphenol-epichlorohydrin polymer	Human	Not classified
MALEIC ANHYDRIDE	Human	Sensitizing

Germ Cell Mutagenicity

Name	Route	Value		
CVCI OUEVANE	T 777	N. d.		
CYCLOHEXANE	In Vitro	Not mutagenic		
CYCLOHEXANE	In vivo	Some positive data exist, but the data are not sufficient for classification		
XYLENE	In Vitro	Not mutagenic		
XYLENE	In vivo	Not mutagenic		
ETHYLBENZENE	In vivo	Not mutagenic		
ETHYLBENZENE	In Vitro	Some positive data exist, but the data are not sufficient for classification		
ETHYL ALCOHOL	In Vitro	Some positive data exist, but the data are not sufficient for classification		
ETHYL ALCOHOL	In vivo	Some positive data exist, but the data are not sufficient for classification		
O-XYLENE	In Vitro	Not mutagenic		
O-XYLENE	In vivo	Not mutagenic		
ETHYL ACETATE	In Vitro	Not mutagenic		
ETHYL ACETATE	In vivo	Not mutagenic		
Isopropyl Alcohol	In Vitro	Not mutagenic		
Isopropyl Alcohol	In vivo	Not mutagenic		
METHYL ALCOHOL	In Vitro	Some positive data exist, but the data are not sufficient for classification		
METHYL ALCOHOL	In vivo	Some positive data exist, but the data are not sufficient for classification		
4,4'-isopropylidenediphenol-epichlorohydrin polymer	In vivo	Not mutagenic		
4,4'-isopropylidenediphenol-epichlorohydrin polymer	In Vitro	Some positive data exist, but the data are not sufficient for classification		
TOLUENE	In Vitro	Not mutagenic		
TOLUENE	In vivo	Not mutagenic		
Cumene	In Vitro	Not mutagenic		
Cumene	In vivo	Not mutagenic		
MALEIC ANHYDRIDE	In vivo	Not mutagenic		
MALEIC ANHYDRIDE	In Vitro	Some positive data exist, but the data are not sufficient for classification		

Carcinogenicity

Name	Route	Species	Value
XYLENE	Dermal	Rat	Not carcinogenic
XYLENE	Ingestion	Multiple	Not carcinogenic
		animal	
		species	

XYLENE	Inhalation	Human	Some positive data exist, but the data are not
			sufficient for classification
ETHYLBENZENE	Inhalation	Multiple	Carcinogenic
		animal	
		species	
ETHYL ALCOHOL	Ingestion	Multiple	Some positive data exist, but the data are not
		animal	sufficient for classification
		species	
O-XYLENE	Dermal	Rat	Not carcinogenic
O-XYLENE	Ingestion	Multiple	Not carcinogenic
		animal	
		species	
O-XYLENE	Inhalation	Human	Some positive data exist, but the data are not
			sufficient for classification
Isopropyl Alcohol	Inhalation	Rat	Some positive data exist, but the data are not
1 17			sufficient for classification
METHYL ALCOHOL	Inhalation	Multiple	Not carcinogenic
		animal	
		species	
4,4'-isopropylidenediphenol-epichlorohydrin polymer	Dermal	Mouse	Some positive data exist, but the data are not
			sufficient for classification
TOLUENE	Dermal	Mouse	Some positive data exist, but the data are not
			sufficient for classification
TOLUENE	Ingestion	Rat	Some positive data exist, but the data are not
	0.22		sufficient for classification
TOLUENE	Inhalation	Mouse	Some positive data exist, but the data are not
			sufficient for classification
Cumene	Inhalation	Multiple	Carcinogenic
		animal	
		species	

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
CYCLOHEXANE	Inhalation	Not classified for female reproduction	Rat	NOAEL 24 mg/l	2 generation
CYCLOHEXANE	Inhalation	Not classified for male reproduction	Rat	NOAEL 24 mg/l	2 generation
CYCLOHEXANE	Inhalation	Not classified for development	Rat	NOAEL 6.9 mg/l	2 generation
XYLENE	Inhalation	Not classified for female reproduction	Human	NOAEL Not available	occupational exposure
XYLENE	Ingestion	Not classified for development	Mouse	NOAEL Not available	during organogenesis
XYLENE	Inhalation	Not classified for development	Multiple animal species	NOAEL Not available	during gestation
ETHYLBENZENE	Inhalation	Not classified for development	Rat	NOAEL 4.3 mg/l	premating & during gestation
ETHYL ALCOHOL	Inhalation	Not classified for development	Rat	NOAEL 38 mg/l	during gestation
ETHYL ALCOHOL	Ingestion	Not classified for development	Rat	NOAEL 5,200 mg/kg/day	premating & during gestation
O-XYLENE	Inhalation	Not classified for female reproduction	Human	NOAEL Not available	occupational exposure
O-XYLENE	Ingestion	Not classified for development	Mouse	NOAEL Not available	during organogenesis
O-XYLENE	Inhalation	Not classified for development	Multiple animal species	NOAEL Not available	during gestation
Isopropyl Alcohol	Ingestion	Not classified for development	Rat	NOAEL 400 mg/kg/day	during organogenesis

Isopropyl Alcohol	Inhalation	Not classified for development	Rat	LOAEL 9 mg/l	during gestation
METHYL ALCOHOL	Ingestion	Not classified for male reproduction	Rat	NOAEL 1,600 mg/kg/day	21 days
METHYL ALCOHOL	Ingestion	Toxic to development	Mouse	LOAEL 4,000 mg/kg/day	during organogenesis
METHYL ALCOHOL	Inhalation	Toxic to development	Mouse	NOAEL 1.3 mg/l	during organogenesis
4,4'-isopropylidenediphenol- epichlorohydrin polymer	Ingestion	Not classified for female reproduction	Rat	NOAEL 750 mg/kg/day	2 generation
4,4'-isopropylidenediphenol- epichlorohydrin polymer	Ingestion	Not classified for male reproduction	Rat	NOAEL 750 mg/kg/day	2 generation
4,4'-isopropylidenediphenol- epichlorohydrin polymer	Dermal	Not classified for development	Rabbit	NOAEL 300 mg/kg/day	during organogenesis
4,4'-isopropylidenediphenol- epichlorohydrin polymer	Ingestion	Not classified for development	Rat	NOAEL 750 mg/kg/day	2 generation
TOLUENE	Inhalation	Not classified for female reproduction	Human	NOAEL Not available	occupational exposure
TOLUENE	Inhalation	Not classified for male reproduction	Rat	NOAEL 2.3 mg/l	1 generation
TOLUENE	Ingestion	Toxic to development	Rat	LOAEL 520 mg/kg/day	during gestation
TOLUENE	Inhalation	Toxic to development	Human	NOAEL Not available	poisoning and/or abuse
Cumene	Inhalation	Not classified for development	Rabbit	NOAEL 11.3 mg/l	during organogenesis
MALEIC ANHYDRIDE	Ingestion	Not classified for female reproduction	Rat	NOAEL 55 mg/kg/day	2 generation
MALEIC ANHYDRIDE	Ingestion	Not classified for male reproduction	Rat	NOAEL 55 mg/kg/day	2 generation
MALEIC ANHYDRIDE	Ingestion	Not classified for development	Rat	NOAEL 140 mg/kg/day	during organogenesis

Lactation

Name	Route	Species	Value
XYLENE	Ingestion	Mouse	Not classified for effects on or via lactation
O-XYLENE	Ingestion	Mouse	Not classified for effects on or via lactation

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
CYCLOHEXANE	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human and animal	NOAEL Not available	
CYCLOHEXANE	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human and animal	NOAEL Not available	
CYCLOHEXANE	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Professio nal judgeme nt	NOAEL Not available	
XYLENE	Inhalation	auditory system	Causes damage to organs	Rat	LOAEL 6.3 mg/l	8 hours
XYLENE	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
XYLENE	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
XYLENE	Inhalation	eyes	Not classified	Rat	NOAEL 3.5 mg/l	not available

XYLENE	Inhalation	liver	Not classified	Multiple animal species	NOAEL Not available	
XYLENE	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Multiple animal species	NOAEL Not available	
XYLENE	Ingestion	eyes	Not classified	Rat	NOAEL 250 mg/kg	not applicable
ETHYLBENZENE	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
ETHYLBENZENE	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human and animal	NOAEL Not available	
ETHYL ALCOHOL	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	LOAEL 9.4 mg/l	not available
ETHYL ALCOHOL	Inhalation	central nervous system depression	Not classified	Human and animal	NOAEL not available	
ETHYL ALCOHOL	Ingestion	central nervous system depression	Not classified	Multiple animal species	NOAEL not available	
ETHYL ALCOHOL	Ingestion	kidney and/or bladder	Not classified	Dog	NOAEL 3,000 mg/kg	
O-XYLENE	Inhalation	auditory system	Causes damage to organs	Rat	LOAEL 6.3 mg/l	8 hours
O-XYLENE	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
O-XYLENE	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
O-XYLENE	Inhalation	eyes	Not classified	Rat	NOAEL 3.5 mg/l	not available
O-XYLENE	Inhalation	liver	Not classified	Multiple animal species	NOAEL Not available	
O-XYLENE	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Multiple animal species	NOAEL Not available	
O-XYLENE	Ingestion	eyes	Not classified	Rat	NOAEL 250 mg/kg	not applicable
ETHYL ACETATE	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
ETHYL ACETATE	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
ETHYL ACETATE	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
Isopropyl Alcohol	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
Isopropyl Alcohol	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
Isopropyl Alcohol	Inhalation	auditory system	Not classified	Guinea pig	NOAEL 13.4 mg/l	24 hours
Isopropyl Alcohol	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	poisoning and/or abuse
METHYL ALCOHOL	Inhalation	blindness	Causes damage to organs	Human	NOAEL Not available	occupational exposure
METHYL ALCOHOL	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	not available
METHYL ALCOHOL	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL Not available	6 hours
METHYL ALCOHOL	Ingestion	blindness	Causes damage to organs	Human	NOAEL Not available	poisoning and/or abuse
METHYL ALCOHOL	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	poisoning and/or abuse

D 14 C 26

TOLUENE	Inhalation	central nervous	May cause drowsiness or	Human	NOAEL Not	
		system depression	dizziness		available	
TOLUENE	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
TOLUENE	Inhalation	immune system	Not classified	Mouse	NOAEL 0.004 mg/l	3 hours
TOLUENE	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	poisoning and/or abuse
Cumene	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Multiple animal species	NOAEL Not available	not available
Cumene	Inhalation	respiratory irritation	May cause respiratory irritation	Human	LOAEL 0.2 mg/l	occupational exposure
Cumene	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Multiple animal species	NOAEL Not available	not available
MALEIC ANHYDRIDE	Inhalation	respiratory irritation	May cause respiratory irritation	Human	NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
CYCLOHEXANE	Inhalation	liver	Not classified	Rat	NOAEL 24 mg/l	90 days
CYCLOHEXANE	Inhalation	auditory system	Not classified	Rat	NOAEL 1.7 mg/l	90 days
CYCLOHEXANE	Inhalation	kidney and/or bladder	Not classified	Rabbit	NOAEL 2.7 mg/l	10 weeks
CYCLOHEXANE	Inhalation	hematopoietic system	Not classified	Mouse	NOAEL 24 mg/l	14 weeks
CYCLOHEXANE	Inhalation	peripheral nervous system	Not classified	Rat	NOAEL 8.6 mg/l	30 weeks
XYLENE	Inhalation	nervous system	Causes damage to organs through prolonged or repeated exposure	Rat	LOAEL 0.4 mg/l	4 weeks
XYLENE	Inhalation	auditory system	May cause damage to organs though prolonged or repeated exposure	Rat	LOAEL 7.8 mg/l	5 days
XYLENE	Inhalation	liver	Not classified	Multiple animal species	NOAEL Not available	
XYLENE	Inhalation	heart endocrine system gastrointestinal tract hematopoietic system muscles kidney and/or bladder respiratory system	Not classified	Multiple animal species	NOAEL 3.5 mg/l	13 weeks
XYLENE	Ingestion	auditory system	Not classified	Rat	NOAEL 900 mg/kg/day	2 weeks
XYLENE	Ingestion	kidney and/or bladder	Not classified	Rat	NOAEL 1,500 mg/kg/day	90 days
XYLENE	Ingestion	liver	Not classified	Multiple animal species	NOAEL Not available	
XYLENE	Ingestion	heart skin endocrine system bone, teeth, nails, and/or hair hematopoietic system immune system nervous system respiratory system	Not classified	Mouse	NOAEL 1,000 mg/kg/day	103 weeks
ETHYLBENZENE	Inhalation	kidney and/or	Some positive data exist, but the	Rat	NOAEL 1.1	2 years

		bladder	data are not sufficient for classification		mg/l	
ETHYLBENZENE	Inhalation	liver	Some positive data exist, but the data are not sufficient for classification	Mouse	NOAEL 1.1 mg/l	103 weeks
ETHYLBENZENE	Inhalation	hematopoietic system	Not classified	Rat	NOAEL 3.4 mg/l	28 days
ETHYLBENZENE	Inhalation	auditory system	Not classified	Rat	NOAEL 2.4 mg/l	5 days
ETHYLBENZENE	Inhalation	endocrine system	Not classified	Mouse	NOAEL 3.3 mg/l	103 weeks
ETHYLBENZENE	Inhalation	gastrointestinal tract	Not classified	Rat	NOAEL 3.3 mg/l	2 years
ETHYLBENZENE	Inhalation	bone, teeth, nails, and/or hair muscles	Not classified	Multiple animal species	NOAEL 4.2 mg/l	90 days
ETHYLBENZENE	Inhalation	heart immune system respiratory system	Not classified	Multiple animal species	NOAEL 3.3 mg/l	2 years
ETHYLBENZENE	Ingestion	liver kidney and/or bladder	Not classified	Rat	NOAEL 680 mg/kg/day	6 months
ETHYL ALCOHOL	Inhalation	liver	Some positive data exist, but the data are not sufficient for classification	Rabbit	LOAEL 124 mg/l	365 days
ETHYL ALCOHOL	Inhalation	hematopoietic system immune system	Not classified	Rat	NOAEL 25 mg/l	14 days
ETHYL ALCOHOL	Ingestion	liver	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 8,000 mg/kg/day	4 months
ETHYL ALCOHOL	Ingestion	kidney and/or bladder	Not classified	Dog	NOAEL 3,000 mg/kg/day	7 days
O-XYLENE	Inhalation	nervous system	Causes damage to organs through prolonged or repeated exposure	Rat	LOAEL 0.4 mg/l	4 weeks
O-XYLENE	Inhalation	auditory system	May cause damage to organs though prolonged or repeated exposure	Rat	LOAEL 7.8 mg/l	5 days
O-XYLENE	Inhalation	liver	Not classified	Multiple animal species	NOAEL Not available	
O-XYLENE	Inhalation	heart endocrine system gastrointestinal tract hematopoietic system muscles kidney and/or bladder respiratory system	Not classified	Multiple animal species	NOAEL 3.5 mg/l	13 weeks
O-XYLENE	Ingestion	auditory system	Not classified	Rat	NOAEL 900 mg/kg/day	2 weeks
O-XYLENE	Ingestion	kidney and/or bladder	Not classified	Rat	NOAEL 1,500 mg/kg/day	90 days
O-XYLENE	Ingestion	liver	Not classified	Multiple animal species	NOAEL Not available	
O-XYLENE	Ingestion	heart skin endocrine system bone, teeth, nails, and/or hair hematopoietic system immune system nervous system respiratory system	Not classified	Mouse	NOAEL 1,000 mg/kg/day	103 weeks
ETHYL ACETATE	Inhalation	endocrine system liver nervous	Not classified	Rat	NOAEL 0.043 mg/l	90 days

		system				
ETHYL ACETATE	Inhalation	hematopoietic system	Not classified	Rabbit	LOAEL 16 mg/l	40 days
ETHYL ACETATE	Ingestion	hematopoietic system liver kidney and/or bladder	Not classified	Rat	NOAEL 3,600 mg/kg/day	90 days
Isopropyl Alcohol	Inhalation	kidney and/or bladder	Not classified	Rat	NOAEL 12.3 mg/l	24 months
Isopropyl Alcohol	Inhalation	nervous system	Not classified	Rat	NOAEL 12 mg/l	13 weeks
Isopropyl Alcohol	Ingestion	kidney and/or bladder	Not classified	Rat	NOAEL 400 mg/kg/day	12 weeks
METHYL ALCOHOL	Inhalation	liver	Not classified	Rat	NOAEL 6.55 mg/l	4 weeks
METHYL ALCOHOL	Inhalation	respiratory system	Not classified	Rat	NOAEL 13.1 mg/l	6 weeks
METHYL ALCOHOL	Ingestion	liver nervous system	Not classified	Rat	NOAEL 2,500 mg/kg/day	90 days
4,4'- isopropylidenediphenol- epichlorohydrin polymer	Dermal	liver	Not classified	Rat	NOAEL 1,000 mg/kg/day	2 years
4,4'- isopropylidenediphenol- epichlorohydrin polymer	Dermal	nervous system	Not classified	Rat	NOAEL 1,000 mg/kg/day	13 weeks
4,4'- isopropylidenediphenol- epichlorohydrin polymer	Ingestion	auditory system heart endocrine system hematopoietic system liver eyes kidney and/or bladder	Not classified	Rat	NOAEL 1,000 mg/kg/day	28 days
TOLUENE	Inhalation	auditory system eyes olfactory system	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	poisoning and/or abuse
TOLUENE	Inhalation	nervous system	May cause damage to organs though prolonged or repeated exposure	Human	NOAEL Not available	poisoning and/or abuse
TOLUENE	Inhalation	respiratory system	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 2.3 mg/l	15 months
TOLUENE	Inhalation	heart liver kidney and/or bladder	Not classified	Rat	NOAEL 11.3 mg/l	15 weeks
TOLUENE	Inhalation	endocrine system	Not classified	Rat	NOAEL 1.1 mg/l	4 weeks
TOLUENE	Inhalation	immune system	Not classified	Mouse	NOAEL Not available	20 days
TOLUENE	Inhalation	bone, teeth, nails, and/or hair	Not classified	Mouse	NOAEL 1.1 mg/l	8 weeks
TOLUENE	Inhalation	hematopoietic system vascular system	Not classified	Human	NOAEL Not available	occupational exposure
TOLUENE	Inhalation	gastrointestinal tract	Not classified	Multiple animal species	NOAEL 11.3 mg/l	15 weeks
TOLUENE	Ingestion	nervous system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 625 mg/kg/day	13 weeks
TOLUENE	Ingestion	heart	Not classified	Rat	NOAEL 2,500 mg/kg/day	13 weeks
TOLUENE	Ingestion	liver kidney and/or bladder	Not classified	Multiple animal species	NOAEL 2,500 mg/kg/day	13 weeks
TOLUENE	Ingestion	hematopoietic system	Not classified	Mouse	NOAEL 600 mg/kg/day	14 days
TOLUENE	Ingestion	endocrine system	Not classified	Mouse	NOAEL 105	28 days

					mg/kg/day	
TOLUENE	Ingestion	immune system	Not classified	Mouse	NOAEL 105 mg/kg/day	4 weeks
Cumene	Inhalation	auditory system endocrine system hematopoietic system liver nervous system eyes	Not classified	Rat	NOAEL 59 mg/l	13 weeks
Cumene	Inhalation	kidney and/or bladder	Not classified	Rat	NOAEL 4.9 mg/l	13 weeks
Cumene	Inhalation	respiratory system	Not classified	Rat	NOAEL 59 mg/l	13 weeks
Cumene	Ingestion	kidney and/or bladder heart endocrine system hematopoietic system liver respiratory system	Not classified	Rat	NOAEL 769 mg/kg/day	6 months
MALEIC ANHYDRIDE	Inhalation	respiratory system	Causes damage to organs through prolonged or repeated exposure	Rat	LOAEL 0.0011 mg/l	6 months
MALEIC ANHYDRIDE	Inhalation	endocrine system hematopoietic system nervous system kidney and/or bladder heart liver eyes	Not classified	Rat	NOAEL 0.0098 mg/l	6 months
MALEIC ANHYDRIDE	Ingestion	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 55 mg/kg/day	80 days
MALEIC ANHYDRIDE	Ingestion	liver	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 250 mg/kg/day	183 days
MALEIC ANHYDRIDE	Ingestion	heart nervous system	Not classified	Rat	NOAEL 600 mg/kg/day	183 days
MALEIC ANHYDRIDE	Ingestion	gastrointestinal tract	Not classified	Rat	NOAEL 150 mg/kg/day	80 days
MALEIC ANHYDRIDE	Ingestion	hematopoietic system	Not classified	Dog	NOAEL 60 mg/kg/day	90 days
MALEIC ANHYDRIDE	Ingestion	skin endocrine system immune system eyes respiratory system	Not classified	Rat	NOAEL 150 mg/kg/day	80 days

Aspiration Hazard

110)11 1111011 11	
Name	Value
CYCLOHEXANE	Aspiration hazard
XYLENE	Aspiration hazard
ETHYLBENZENE	Aspiration hazard
O-XYLENE	Aspiration hazard
TOLUENE	Aspiration hazard
Cumene	Aspiration hazard

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labeling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

Acute aquatic hazard: GHS Acute 1: Very toxic to aquatic life.

Chronic aquatic hazard:

GHS Chronic 3: Harmful to aquatic life with long lasting effects

No product test data available

Material	Cas #	Organism	Туре	Exposure	Test Endpoint	
CYCLOHEXA	110-82-7	Bacteria	Experimental	24 hours	IC50	97 mg/l
NE	110.00		-	0.51	7.050	1.50 (1
CYCLOHEXA	110-82-7	Fathead	Experimental	96 hours	LC50	4.53 mg/l
NE CHEVA	110.02.7	Minnow	D 1	40.1	EGEO	0.0 //
CYCLOHEXA	110-82-7	Water flea	Experimental	48 hours	EC50	0.9 mg/l
NE NATI ENTE	1220 20 7	A 4: 4 1	F .: . 1	2.1	NOEC	1.57 /1
XYLENE	1330-20-7	Activated sludge	Estimated	3 hours	NOEC	157 mg/l
XYLENE	1330-20-7	Green Algae	Estimated	72 hours	EC50	4.36 mg/l
XYLENE	1330-20-7	Rainbow Trout	Estimated	96 hours	LC50	2.6 mg/l
XYLENE	1330-20-7	Water flea	Estimated	48 hours	EC50	3.82 mg/l
XYLENE	1330-20-7	Green Algae	Estimated	72 hours	NOEC	0.44 mg/l
XYLENE	1330-20-7	Rainbow Trout	Estimated	56 days	NOEC	>1.3 mg/l
XYLENE	1330-20-7	Water flea	Estimated	7 days	NOEC	0.96 mg/l
ETHYLBENZ ENE	100-41-4	Green Algae	Estimated	73 hours	EC50	4.36 mg/l
ETHYLBENZ ENE	100-41-4	Rainbow Trout	Estimated	96 hours	LC50	2.6 mg/l
ETHYLBENZ ENE	100-41-4	Water flea	Estimated	48 hours	EC50	3.82 mg/l
ETHYLBENZ ENE	100-41-4	Activated sludge	Experimental	49 hours	EC50	130 mg/l
ETHYLBENZ ENE	100-41-4	Green Algae	Estimated	73 hours	NOEC	0.44 mg/l
ETHYLBENZ ENE	100-41-4	Rainbow Trout	Estimated	56 days	NOEC	>1.3 mg/l
ETHYLBENZ ENE	100-41-4	Water flea	Estimated	7 days	NOEC	0.96 mg/l
ETHYL ALCOHOL	64-17-5	Fathead Minnow	Experimental	96 hours	LC50	14,200 mg/l
ETHYL ALCOHOL	64-17-5	Fish other	Experimental	96 hours	LC50	11,000 mg/l
ETHYL ALCOHOL	64-17-5	Green algae	Experimental	72 hours	EC50	275 mg/l
ETHYL ALCOHOL	64-17-5	Water flea	Experimental	48 hours	LC50	5,012 mg/l
ETHYL ALCOHOL	64-17-5	Green algae	Experimental	72 hours	ErC10	11.5 mg/l
ETHYL ALCOHOL	64-17-5	Water flea	Experimental	10 days	NOEC	9.6 mg/l
ACRYLATE POLYMER	Trade Secret		Data not available or insufficient for			N/A

		classification			
58609-36-9		Data not			N/A
7 62 0	Doctorio		16 hours	LOEC	1,050 mg/l
67-63-0	Crustacea	Experimental	24 hours	LC50	>10,000 mg/l
67-63-0	Green Algae	Experimental	72 hours	EC50	>1,000 mg/l
67-63-0	Medaka	Experimental	96 hours	LC50	>100 mg/l
57-63-0	Water flea	Experimental	48 hours	EC50	>1,000 mg/l
57-63-0	Green algae	Experimental	72 hours	NOEC	1,000 mg/l
57-63-0	Water flea	Experimental	21 days	NOEC	100 mg/l
05-47-6	Activated	Estimated	3 hours	NOEC	157 mg/l
05_47_6		Experimental	73 hours	EC50	4.36 mg/l
				_	2.6 mg/l
		-			1 mg/l
					0.44 mg/l
		<u> </u>			>1.3 mg/l
		•	_		1.17 mg/l
	 				2,900 mg/l
					_,, , , ,, , ,
41-78-6	Crustacea	Experimental	48 hours	EC50	165 mg/l
41.50.6	D: 1	.	0.61	T 050	212.5
41-78-6	Fish	Experimental	96 hours	LC50	212.5 mg/l
<i>A</i> 1 70 <i>C</i>	Crean Alesa	Eanim-antal	72 h a	NOEC	100 /1
41-/8-0	Green Algae	Experimental	/2 nours	NOEC	100 mg/l
41-78-6	Water flea	Experimental	21 days	NOEC	2.4 mg/l
141 70 0	water nea	Experimental	21 days	Note	2.4 mg/1
25068-38-6	Activated	Estimated	3 hours	IC50	>100 mg/l
	sludge				
25068-38-6	Green Algae	Estimated	72 hours	EC50	>11 mg/l
15060 20 6	Daink T	Datim - 4 - 3	06 h c = ==	I CEO	2 /1
23068-38-6	Kainbow I rout	Estimated	96 nours	LC30	2 mg/l
25068-38-6	Water flea	Estimated	48 hours	EC50	1.8 mg/l
	7-63-0 7-63-0 7-63-0 7-63-0 7-63-0 7-63-0 7-63-0 7-63-0 5-47-6 5-47-6 5-47-6 5-47-6 5-47-6 5-47-6 41-78-6	7-63-0 Bacteria 7-63-0 Crustacea 7-63-0 Green Algae 7-63-0 Medaka 7-63-0 Water flea 7-63-0 Water flea 7-63-0 Green algae 7-63-0 Water flea 5-47-6 Activated sludge 5-47-6 Rainbow Trout 5-47-6 Green Algae 5-47-6 Green Algae 5-47-6 Green Algae 5-47-6 Water flea 5-47-6 Water flea 41-78-6 Fish 41-78-6 Crustacea 41-78-6 Green Algae 41-78-6 Green Algae 5-647-6 Green Algae 5-47-6 Water flea 41-78-6 Green Algae 5-47-6 Green Algae 41-78-6 Rainbow Trout 5-68-38-6 Rainbow Trout	available or insufficient for classification 7-63-0 Bacteria Experimental 7-63-0 Crustacea Experimental 7-63-0 Green Algae Experimental 7-63-0 Medaka Experimental 7-63-0 Water flea Experimental 7-63-0 Green algae Experimental 7-63-0 Water flea Experimental 7-63-0 Water flea Experimental 5-47-6 Activated sludge 5-47-6 Green Algae Experimental 5-47-6 Water flea Experimental 5-47-6 Green Algae Experimental 5-47-6 Green Algae Experimental 5-47-6 Water flea Experimental 5-47-6 Green Algae Experimental 5-47-6 Foren Algae Experimental 5-47-6 Foren Algae Experimental 5-47-6 Foren Algae Experimental 5-47-6 Water flea Experimental 41-78-6 Green Algae Experimental 41-78-6 Green Algae Experimental 41-78-6 Green Algae Experimental Experimental	available or insufficient for classification 7-63-0 Bacteria Experimental 16 hours 7-63-0 Crustacea Experimental 24 hours 7-63-0 Medaka Experimental 72 hours 7-63-0 Medaka Experimental 96 hours 7-63-0 Water flea Experimental 72 hours 7-63-0 Water flea Experimental 72 hours 7-63-0 Water flea Experimental 73 hours 7-63-0 Water flea Experimental 11 days 7-63-0 Water flea Experimental 12 days 7-63-0 Water flea Experimental 13 hours 15-47-6 Green Algae Experimental 96 hours 15-47-6 Water flea Experimental 17 hours 18 hours 18 days 19 days 19 days 10 days 10 days 11 days 12 days 11 days 12 days 13 days 14 hours 15 days 15 days 16 days 17 days 17 days 18 hours 19 de hours 19 de hours 19 de hours 19 de hours 10 days 10 days 11 days 12 days 13 days 14 hours 15 days 16 days 17 days 18 hours 19 de hours 19 de hours 19 de hours 10 days 10 days 11 days 11 days 12 days 13 hours 14 hours 15 days 16 days 17 days 17 days 18 hours 19 de hours 19 de hours 10 days 11 days 11 days 11 days 12 days 13 hours 14 hours 15 days 16 days 17 days 18 hours 19 de hours 19 de hours 10 days 11 days 11 days 11 days 12 days 13 hours 14 hours 15 days 16 days 17 days 17 days 18 hours 19 de hours 19 de hours 10 days 10 days 11 days 11 days 11 days 12 days 13 hours 14 hours 15 days 16 days 17 days 18 hours 18 hours 19 de hours 19 de hours 10 days 10 days 11 days 11 days 11 days 12 days 13 hours 14 days 15 days 16 days 17 days 18 hours 18 hours 19 de hours 19 de hours 10 days 10 days	available or insufficient for classification classi

cpichlorohydri n polymer 4,4" 25068-38-6 Green Algae Estimated 72 hours NOEC 4.2 mg/l	diphenol-	<u> </u>	1		1	T	
4.4							
		25060 20 6	Craan Algaa	Estimated	72 haura	NOEC	4.2 mg/1
diphenol- pichlorohydri polymer		23008-38-0	Green Algae	Estimated	/2 nours	NOEC	4.2 IIIg/1
epichlorohydri							
A A A A A A A A A A							
44' 25068-38-6 Water flea Estimated 21 days NOEC 0.3 mg/l							
		25069 29 6	Water flee	Estimate d	21 dossa	NOEC	0.2 ~/1
Description of the process of the		23008-38-0	water flea	Estimated	21 days	NOEC	0.3 mg/1
cpichlorohydri							
Cumene							
Cumene 98-82-8 Activated sludge Experimental shudge 3 hours EC10 >2,000 mg/l Cumene 98-82-8 Green algae Experimental 72 hours EC50 2.6 mg/l Cumene 98-82-8 Mysid Shrimp Experimental 96 hours EC50 1.2 mg/l Cumene 98-82-8 Rainbow Trout Experimental 96 hours LC50 2.7 mg/l Cumene 98-82-8 Water flea Experimental 20 hours NOEC 0.22 mg/l Cumene 98-82-8 Water flea Experimental 21 days NOEC 0.22 mg/l METHYL 67-56-1 Activated sludge Experimental 24 hours EC50 16.9 mg/l METHYL ALCOHOL 67-56-1 Bluegill Experimental 96 hours EC50 15,400 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 24 hours EC50 22,000 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 24 hours EC50 20,803 mg/l							
Sludge		00 02 0	Astivated	Exmarina antal	2 haura	EC10	>2 000 mg/l
Cumene 98-82-8 Green algae Experimental 72 hours EC50 2.6 mg/l Cumene 98-82-8 Mysid Shrimp Experimental 96 hours EC50 1.2 mg/l Cumene 98-82-8 Rainbow Trout Experimental 96 hours LC50 2.7 mg/l Cumene 98-82-8 Water flea Experimental 48 hours EC50 2.14 mg/l Cumene 98-82-8 Green algae Experimental 21 days NOEC 0.22 mg/l Cumene 98-82-8 Water flea Experimental 21 days NOEC 0.22 mg/l Cumene 98-82-8 Water flea Experimental 3 hours IC50 21,000 mg/l METHYL 67-56-1 Algae or other aquatic plants Experimental 96 hours EC50 15,400 mg/l METHYL 67-56-1 Water flea Experimental 96 hours EC50 22,000 mg/l METHYL 67-56-1 Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l	Cumene	98-82-8		Experimentai	3 nours	ECIU	>2,000 mg/1
Cumene 98-82-8 Mysid Shrimp Experimental 96 hours EC50 1.2 mg/l Cumene 98-82-8 Rainbow Trout Experimental 96 hours LC50 2.7 mg/l Cumene 98-82-8 Water flea Experimental 48 hours EC50 2.14 mg/l Cumene 98-82-8 Water flea Experimental 72 hours NOEC 0.22 mg/l Cumene 98-82-8 Water flea Experimental 72 hours NOEC 0.22 mg/l METHYL 67-56-1 Activated Experimental 3 hours IC50 >1,000 mg/l ALCOHOL Algae or other aquatic plants Experimental 96 hours EC50 16.9 mg/l METHYL 67-56-1 Bluegill Experimental 96 hours EC50 15,400 mg/l ALCOHOL Water flea Experimental 96 hours EC50 22,000 mg/l METHYL 67-56-1 Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l METHYL	Company	00 02 0		E-maninaantal	72 h a	EC50	2.6
Cumene 98-82-8 Rainbow Trout Experimental 96 hours LC50 2.7 mg/l Cumene 98-82-8 Water flea Experimental 48 hours EC50 2.14 mg/l Cumene 98-82-8 Green algae Experimental 72 hours NOEC 0.25 mg/l Cumene 98-82-8 Water flea Experimental 21 days NOEC 0.35 mg/l ALCOHOL 67-56-1 Activated sludge Experimental 3 hours IC50 >1,000 mg/l METHYL 67-56-1 Algae or other aquatic plants Experimental 96 hours EC50 16.9 mg/l METHYL 67-56-1 Bluegill Experimental 96 hours EC50 22,000 mg/l ALCOHOL METHYL 67-56-1 Water flea Experimental 24 hours EC50 20,803 mg/l METHYL 67-56-1 Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l METHYL 67-56-1 Water flea Experimental 12 hours IC50 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Cumene 98-82-8 Water flea Experimental 48 hours EC50 2,14 mg/l Cumene 98-82-8 Green algae Experimental 72 hours NOEC 0.22 mg/l METHYL 67-56-1 Activated Experimental 21 days NOEC 0.25 mg/l METHYL 67-56-1 Activated Experimental 3 hours IC50 >1,000 mg/l METHYL 67-56-1 Algae or other aquatic plants Experimental 96 hours LC50 15,400 mg/l METHYL 67-56-1 Green Algae Experimental 96 hours EC50 22,000 mg/l ALCOHOL METHYL 67-56-1 Water flea Experimental 24 hours EC50 20,803 mg/l ALCOHOL 67-56-1 Water flea Experimental 96 hours NOEC 9.96 mg/l METHYL 67-56-1 Water flea Experimental 21 days NOEC 9.96 mg/l METHYL 67-56-1 Water flea Experimental 21 days NOEC 122 mg/l </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Cumene 98-82-8 Green algae Experimental 72 hours NOEC 0.22 mg/l Cumene 98-82-8 Water flea Experimental 21 days NOEC 0.35 mg/l METHYL 67-56-1 Activated sludge Experimental 3 hours IC50 >1,000 mg/l METHYL 67-56-1 Algae or other aquatic plants Experimental 96 hours EC50 16.9 mg/l METHYL 67-56-1 Bluegill Experimental 96 hours LC50 15,400 mg/l ALCOHOL G7-56-1 Green Algae Experimental 96 hours EC50 22,000 mg/l METHYL 67-56-1 Water flea Experimental 24 hours EC50 20,803 mg/l METHYL 67-56-1 Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l METHYL 67-56-1 Water flea Experimental 21 days NOEC 122 mg/l ALCOHOL 108-88-3 Activated sludge Experimental 21 hours IC50 29							
Cumene 98-82-8 Water flea Experimental 21 days NOEC 0.35 mg/l METHYL ALCOHOL Activated sludge Experimental 3 hours IC50 >1,000 mg/l METHYL ALCOHOL 67-56-1 Algae or other aquatic plants Experimental 96 hours EC50 16.9 mg/l METHYL ALCOHOL 67-56-1 Bluegill Experimental 96 hours LC50 15,400 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 96 hours EC50 22,000 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 24 hours EC50 29,803 mg/l METHYL ALCOHOL 67-56-1 Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 21 days NOEC 122 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 21 hours IC50 292 mg/l METHYL ALCOHOL 108-88-3 Activated <				•			,
METHYL ALCOHOL 67-56-1 sludge Activated sludge Experimental sludge 3 hours IC50 >1,000 mg/l METHYL ALCOHOL 67-56-1 Algae or other aquatic plants Experimental 96 hours EC50 16.9 mg/l METHYL ALCOHOL 67-56-1 Bluegill Experimental 96 hours LC50 15,400 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 24 hours EC50 22,000 mg/l METHYL ALCOHOL 67-56-1 Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 21 days NOEC 9.96 mg/l ALCOHOL 67-56-1 Water flea Experimental 21 days NOEC 122 mg/l ALCOHOL 67-56-1 Water flea Experimental 21 days NOEC 122 mg/l TOLUENE 108-88-3 Activated sludge Experimental 12 hours IC50 292 mg/l TOLUENE 108-88-3 Bacteria Experimental 3 hours EC50 193 mg/l TOLUENE 108-88-3 Green Algae	Cumene		+	•			•
ALCOHOL Algae or other aquatic plants Experimental Algae or other aquatic plants Experimental Algae or other aquatic plants Experimental Septimental Algae or other aquatic plants Algae or other aguatic							
METHYL 67-56-1 Algae or other aquatic plants Experimental 96 hours EC50 16.9 mg/l		67-56-1		Experimental	3 hours	IC50	>1,000 mg/l
ALCOHOL Aquatic plants Experimental 96 hours LC50 15,400 mg/l	ALCOHOL						
METHYL ALCOHOL 67-56-1 ALCOHOL Bluegill Experimental 96 hours LC50 15,400 mg/l METHYL ALCOHOL 67-56-1 Green Algae Experimental 96 hours EC50 22,000 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 24 hours EC50 20,803 mg/l METHYL ALCOHOL 67-56-1 Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 21 days NOEC 122 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 21 days NOEC 122 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 21 days NOEC 122 mg/l ALCOHOL 108-88-3 Activated sludge Experimental 12 hours IC50 292 mg/l TOLUENE 108-88-3 Bacteria Experimental 3 hours EC50 193 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Green Algae Experimental <td>METHYL</td> <td>67-56-1</td> <td>Algae or other</td> <td>Experimental</td> <td>96 hours</td> <td>EC50</td> <td>16.9 mg/l</td>	METHYL	67-56-1	Algae or other	Experimental	96 hours	EC50	16.9 mg/l
ALCOHOL Green Algae Experimental 96 hours EC50 22,000 mg/l	ALCOHOL		aquatic plants				
METHYL ALCOHOL 67-56-1 ALCOHOL Green Algae Experimental 96 hours EC50 22,000 mg/l METHYL ALCOHOL 67-56-1 Algae or other aquatic plants Experimental 24 hours EC50 20,803 mg/l METHYL ALCOHOL 67-56-1 Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 21 days NOEC 122 mg/l METHYL ALCOHOL 108-88-3 Activated sludge Experimental 12 hours IC50 292 mg/l TOLUENE 108-88-3 Bacteria Experimental 12 hours IC50 292 mg/l TOLUENE 108-88-3 Bacteria Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.2 mg/l TOLUENE 108-88-3 Water flea Experi	METHYL	67-56-1	Bluegill	Experimental	96 hours	LC50	15,400 mg/l
ALCOHOL METHYL 67-56-1 Water flea Experimental 24 hours EC50 20,803 mg/l	ALCOHOL						
METHYL ALCOHOL 67-56-1 Algae or other aquatic plants Experimental 24 hours EC50 20,803 mg/l METHYL ALCOHOL 67-56-1 Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l METHYL ALCOHOL 67-56-1 Water flea Experimental 21 days NOEC 122 mg/l ALCOHOL 108-88-3 Activated sludge Experimental 12 hours IC50 292 mg/l TOLUENE 108-88-3 Bacteria Experimental 3 hours EC50 193 mg/l TOLUENE 108-88-3 Bacteria Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 6.41 mg/l TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days	METHYL	67-56-1	Green Algae	Experimental	96 hours	EC50	22,000 mg/l
ALCOHOL Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l	ALCOHOL			_			
ALCOHOL Algae or other aquatic plants Experimental 96 hours NOEC 9.96 mg/l	METHYL	67-56-1	Water flea	Experimental	24 hours	EC50	20,803 mg/l
ALCOHOL aquatic plants Experimental 21 days NOEC 122 mg/l METHYL ALCOHOL 108-88-3 Activated sludge Experimental 12 hours IC50 292 mg/l TOLUENE 108-88-3 Activated sludge Experimental 3 hours EC50 193 mg/l TOLUENE 108-88-3 Bacteria Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 6.41 mg/l TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.78 mg/l TOLUENE 108-88-3 Water flea Experimental 40 days NOEC 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 74.4 mg/l MALEIC <td>ALCOHOL</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	ALCOHOL			1			
ALCOHOL aquatic plants Experimental 21 days NOEC 122 mg/l METHYL ALCOHOL 108-88-3 Activated sludge Experimental 12 hours IC50 292 mg/l TOLUENE 108-88-3 Activated sludge Experimental 3 hours EC50 193 mg/l TOLUENE 108-88-3 Bacteria Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 6.41 mg/l TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.78 mg/l TOLUENE 108-88-3 Water flea Experimental 40 days NOEC 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 74.4 mg/l MALEIC <td>METHYL</td> <td>67-56-1</td> <td>Algae or other</td> <td>Experimental</td> <td>96 hours</td> <td>NOEC</td> <td>9.96 mg/l</td>	METHYL	67-56-1	Algae or other	Experimental	96 hours	NOEC	9.96 mg/l
METHYL ALCOHOL 67-56-1 Water flea Experimental Experimental 21 days NOEC 122 mg/l TOLUENE 108-88-3 Activated sludge Experimental 12 hours IC50 292 mg/l TOLUENE 108-88-3 Bacteria Experimental 3 hours EC50 193 mg/l TOLUENE 108-88-3 Coho Salmon Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 6.41 mg/l TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.78 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 73.8 mg/l	ALCOHOL		1 -	1			
ALCOHOL 108-88-3 Activated sludge Experimental 12 hours IC50 292 mg/l TOLUENE 108-88-3 Bacteria Experimental 3 hours EC50 193 mg/l TOLUENE 108-88-3 Coho Salmon Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 6.41 mg/l TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.78 mg/l TOLUENE 108-88-3 Coho salmon Experimental 40 days NOEC 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 74.4 mg/l MALEIC 108-31-6 Water flea Experimental 18 hours EC10 44.6 mg/l <t< td=""><td>METHYL</td><td>67-56-1</td><td>· · · </td><td>Experimental</td><td>21 days</td><td>NOEC</td><td>122 mg/l</td></t<>	METHYL	67-56-1	· · · 	Experimental	21 days	NOEC	122 mg/l
TOLUENE 108-88-3 Activated sludge Experimental 12 hours IC50 292 mg/l TOLUENE 108-88-3 Bacteria Experimental 3 hours EC50 193 mg/l TOLUENE 108-88-3 Coho Salmon Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 6.41 mg/l TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.78 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 74.4 mg/l MALEIC 108-31-6 Bacteria Experimental 18 hours EC10 44.6 mg/l MA	ALCOHOL			1			
Sludge S		108-88-3	Activated	Experimental	12 hours	IC50	292 mg/l
TOLUENE 108-88-3 Bacteria Experimental 3 hours EC50 193 mg/l TOLUENE 108-88-3 Coho Salmon Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 6.41 mg/l TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.78 mg/l TOLUENE 108-88-3 Coho salmon Experimental 70 days NOEC 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 70 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 74.4 mg/l MALEIC 108-31-6 Bacteria Experimental 18 hours EC10 44.6 mg/l MALEIC 108-31-6 Rainbow Trout Experimental 96 hours LC50 75 mg/l MALE				F			
TOLUENE 108-88-3 Coho Salmon Experimental 96 hours LC50 5.5 mg/l TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 6.41 mg/l TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 40 days NOEC 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 74.4 mg/l MALEIC 108-31-6 Water flea Estimated 48 hours EC50 93.8 mg/l MALEIC 108-31-6 Bacteria Experimental 18 hours EC10 44.6 mg/l MALEIC 108-31-6 Rainbow Trout Experimental 96 hours LC50 75 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC10 11.8 mg/l	TOLUENE	108-88-3	i	Experimental	3 hours	EC50	193 mg/l
TOLUENE 108-88-3 Fish other Experimental 96 hours LC50 6.41 mg/l TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.78 mg/l TOLUENE 108-88-3 Coho salmon Experimental 40 days NOEC 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 74.4 mg/l MALEIC 108-31-6 Bacteria Experimental 18 hours EC10 44.6 mg/l ANHYDRIDE 108-31-6 Rainbow Trout Experimental 96 hours LC50 75 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC10 11.8 mg/l				_			
TOLUENE 108-88-3 Green Algae Experimental 72 hours EC50 12.5 mg/l TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.78 mg/l TOLUENE 108-88-3 Coho salmon Experimental 40 days NOEC 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 74.4 mg/l ANHYDRIDE 108-31-6 Water flea Estimated 48 hours EC50 93.8 mg/l MALEIC 108-31-6 Bacteria Experimental 18 hours EC10 44.6 mg/l ANHYDRIDE 108-31-6 Rainbow Trout Experimental 96 hours LC50 75 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC10 11.8 mg/l			+	<u> </u>			
TOLUENE 108-88-3 Water flea Experimental 48 hours EC50 3.78 mg/l TOLUENE 108-88-3 Coho salmon Experimental 40 days NOEC 3.2 mg/l TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 74.4 mg/l MALEIC 108-31-6 Water flea Estimated 48 hours EC50 93.8 mg/l MALEIC 108-31-6 Bacteria Experimental 18 hours EC10 44.6 mg/l MALEIC 108-31-6 Rainbow Trout Experimental 96 hours LC50 75 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC10 11.8 mg/l			 				
TOLUENE108-88-3Coho salmonExperimental40 daysNOEC3.2 mg/lTOLUENE108-88-3Water fleaExperimental7 daysNOEC0.74 mg/lMALEIC ANHYDRIDE108-31-6Green algaeEstimated72 hoursEC5074.4 mg/lMALEIC ANHYDRIDE108-31-6Water fleaEstimated48 hoursEC5093.8 mg/lMALEIC ANHYDRIDE108-31-6BacteriaExperimental18 hoursEC1044.6 mg/lMALEIC ANHYDRIDE108-31-6Rainbow TroutExperimental96 hoursLC5075 mg/lMALEIC108-31-6Green algaeEstimated72 hoursEC1011.8 mg/l							•
TOLUENE 108-88-3 Water flea Experimental 7 days NOEC 0.74 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC50 74.4 mg/l MALEIC 108-31-6 Water flea Estimated 48 hours EC50 93.8 mg/l MALEIC 108-31-6 Bacteria Experimental 18 hours EC10 44.6 mg/l MALEIC 108-31-6 Rainbow Trout Experimental 96 hours LC50 75 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC10 11.8 mg/l		i e					-
MALEIC ANHYDRIDE			 		'		• •
ANHYDRIDE Stimated Stimated				•			•
MALEIC ANHYDRIDE 108-31-6 Water flea Estimated 48 hours EC50 93.8 mg/l MALEIC ANHYDRIDE 108-31-6 Bacteria Experimental 18 hours EC10 44.6 mg/l MALEIC ANHYDRIDE 108-31-6 Rainbow Trout Experimental 96 hours LC50 75 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC10 11.8 mg/l		100-31-0	Green argae	Estimated	/2 Hours	ECSU	/4.4 mg/l
ANHYDRIDE Experimental 18 hours EC10 44.6 mg/l MALEIC ANHYDRIDE Rainbow Trout Experimental 96 hours LC50 75 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC10 11.8 mg/l		100 21 6	Water O.	Estimate 1	40 %	ECSO	02.9
MALEIC ANHYDRIDE Bacteria Experimental 18 hours EC10 44.6 mg/l MALEIC 108-31-6 Rainbow Trout Experimental 96 hours LC50 75 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC10 11.8 mg/l		108-31-6	water flea	Estimated	48 nours	EC30	93.8 mg/l
ANHYDRIDE		100.21.6	D ()	г	10.1	EGIO	44.6 /1
MALEIC ANHYDRIDE Rainbow Trout Experimental 96 hours LC50 75 mg/l MALEIC 108-31-6 Green algae Estimated 72 hours EC10 11.8 mg/l		108-31-6	Bacteria	Experimental	18 hours	EC10	44.6 mg/l
ANHYDRIDE		100.21.5	D : 1 =	p	0.61	1.050	7.5 /1
MALEIC 108-31-6 Green algae Estimated 72 hours EC10 11.8 mg/l		108-31-6	Rainbow Trout	Experimental	96 hours	LC50	75 mg/l
						1	
ANHYDRIDE		108-31-6	Green algae	Estimated	72 hours	EC10	11.8 mg/l
	ANHYDRIDE					1	

Page: 21 of 25

MALEIC	108-31-6	Water flea	Experimental	21 days	NOEC	10 mg/l
ANHYDRIDE						

12.2. Persistence and degradability

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
CYCLOHEXA	110-82-7	Experimental		Photolytic half-	4.14 days (t	Non-standard method
NE		Photolysis		life (in air)	1/2)	
CYCLOHEXA	110-82-7	Experimental	28 days	Biological	77 %	OECD 301F -
NE		Biodegradation		Oxygen	BOD/ThBOD	Manometric Respiro
				Demand		
XYLENE	1330-20-7	Experimental		Photolytic half-	1.4 days (t 1/2)	Non-standard method
		Photolysis		life (in air)		
XYLENE	1330-20-7	Experimental	28 days	Biological	90-98 %	OECD 301F -
		Biodegradation		Oxygen	BOD/ThBOD	Manometric Respiro
				Demand		
ETHYLBENZ	100-41-4	Experimental	28 days	Biological	90-98 %	OECD 301F -
ENE		Biodegradation		Oxygen Demand	BOD/ThBOD	Manometric Respiro
ETHYL	64-17-5	Experimental	14 days	Biological	89 %	OECD 301C - MITI (I)
ALCOHOL	04 17 3	Biodegradation	14 days	Oxygen	BOD/ThBOD	OLCO JUIC WITH (I)
ALCOHOL		Diodegradation		Demand	BOD/TIIBOD	
ACRYLATE	Trade Secret	Data not			N/A	
POLYMER		availbl-				
		insufficient				
CHLORINAT	68609-36-9	Data not			n/a	
ED RUBBER		availbl-				
		insufficient				
Isopropyl	67-63-0	Experimental	14 days	Biological	86 %	OECD 301C - MITI (I)
Alcohol		Biodegradation		Oxygen	BOD/ThBOD	
				Demand		
O-XYLENE	95-47-6	Estimated	28 days	Biological	98 %	OECD 301F -
		Biodegradation		Oxygen	BOD/ThBOD	Manometric Respiro
				Demand		
ETHYL	141-78-6	Experimental		Photolytic half-		Non-standard method
ACETATE		Photolysis		life (in air)	1/2)	
ETHYL	141-78-6	Experimental	14 days	Biological	94 %	OECD 301C - MITI (I)
ACETATE		Biodegradation		Oxygen	BOD/ThBOD	
				Demand		
4,4'-	25068-38-6	Estimated		Hydrolytic	117 hours (t	Non-standard method
isopropylidene		Hydrolysis		half-life	1/2)	
diphenol-						
epichlorohydri						
n polymer	25069 29 6	Estimated	20 day	Dielogical	5 0/ DOD/COD	OECD 301F -
4,4'- isopropylidene	25068-38-6	Estimated	28 days	Biological	5 %BOD/COD	Manometric Respiro
diphenol-		Biodegradation		Oxygen Demand		ivianomenie kespiro
epichlorohydri				Demand		
n polymer						
Cumene	98-82-8	Experimental		Photolytic half-	4.5 days (t. 1/2)	Non-standard method
Camene	70-02-0	Photolysis		life (in air)	τ.5 days (t 1/2)	TVOII-Standard IIICHIOU
Cumene	98-82-8	Experimental	14 days	Biological	33 %	OECD 301C - MITI (I)
	20020	Biodegradation	1 i duys	Oxygen	BOD/ThBOD	
		21040grudution		Demand		
	<u> </u>	1	i .	Demand	<u> </u>	1

METHYL	67-56-1	Experimental	14 days	Biological	92 %	OECD 301C - MITI (I)
ALCOHOL		Biodegradation		Oxygen	BOD/ThBOD	
				Demand		
TOLUENE	108-88-3	Experimental		Photolytic half-	5.2 days (t 1/2)	Non-standard method
		Photolysis		life (in air)		
TOLUENE	108-88-3	Experimental	20 days	Biological	80 %	
		Biodegradation	-	Oxygen	BOD/ThBOD	
				Demand		
MALEIC	108-31-6	Experimental		Hydrolytic	22 seconds (t	Non-standard method
ANHYDRIDE		Hydrolysis		half-life	1/2)	
MALEIC	108-31-6	Estimated	25 days	Carbon dioxide	>90 % weight	OECD 301B - Mod.
ANHYDRIDE		Biodegradation		evolution		Sturm or CO2

12.3. Bioaccumulative potential

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
CYCLOHEXA	110-82-7	Experimental	56 days	Bioaccumulatio	129	OECD 305E-Bioaccum
NE		BCF-Carp		n Factor		Fl-thru fis
XYLENE	1330-20-7	Experimental BCF - Rainbow Trout	56 days	Bioaccumulatio n Factor	25.9	Non-standard method
ETHYLBENZ ENE	100-41-4	Experimental BCF - Rainbow Trout	56 days	Bioaccumulatio n Factor	25.9	Non-standard method
ETHYL ALCOHOL	64-17-5	Experimental Bioconcentrati on		Log of Octanol/H2O part. coeff	-0.35	Non-standard method
ACRYLATE POLYMER	Trade Secret	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
CHLORINAT ED RUBBER	68609-36-9	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Isopropyl Alcohol	67-63-0	Experimental Bioconcentrati on		Log of Octanol/H2O part. coeff	0.05	Non-standard method
O-XYLENE	95-47-6	Experimental Bioconcentrati on		Log of Octanol/H2O part. coeff	3.12	Non-standard method
ETHYL ACETATE	141-78-6	Experimental Bioconcentrati on		Log of Octanol/H2O part. coeff	0.68	Non-standard method
4,4'- isopropylidene diphenol- epichlorohydri n polymer	25068-38-6	Estimated Bioconcentrati on		Log of Octanol/H2O part. coeff	3.242	Non-standard method
Cumene	98-82-8	Estimated Bioconcentrati on		Bioaccumulatio n Factor		Non-standard method
METHYL ALCOHOL	67-56-1	Experimental Bioconcentrati on		Log of Octanol/H2O part. coeff	-0.77	Non-standard method

TOLUENE	108-88-3	Experimental	Log of	2.73	Non-standard method
		Bioconcentrati	Octanol/H2O		
		on	part. coeff		
MALEIC	108-31-6	Experimental	Log of	-2.61	Non-standard method
ANHYDRIDE		Bioconcentrati	Octanol/H2O		
		on	part. coeff		

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available

SECTION 13: Disposal considerations

13.1. Disposal methods

According to the Environmental Quality (Scheduled Wastes) Regulations 2005, scheduled waste has to be sent to a prescribed premise for recycling, treatment or disposal. Please approach Kualiti Alam for proper schedule waste classification and disposal.

SECTION 14: Transport Information

Marine Transport (IMDG)

UN Number: None assigned.

Proper Shipping Name: None assigned. Technical Name: None assigned. Hazard Class/Division: None assigned. Subsidiary Risk: None assigned. Packing Group: None assigned. Limited Quantity: None assigned.

Marine Pollutant: None assigned.

Marine Pollutant Technical Name: None assigned.

Other Dangerous Goods Descriptions: Not restricted, as per Special Provision 216.

Air Transport (IATA)

UN Number: None assigned.

Proper Shipping Name: None assigned.
Technical Name: None assigned.
Hazard Class/Division: None assigned.
Subsidiary Risk: None assigned.
Packing Group: None assigned.
Limited Quantity: None assigned.
Marine Pollutant: None assigned.

Marine Pollutant Technical Name: None assigned.

Other Dangerous Goods Descriptions: Not restricted, as per Special Provision A46.

Transportation classifications are provided as a customer service. As for shipping, YOU remain responsible for complying with all applicable laws and regulations, including proper transportation classification and packaging. 3M's transportation classifications are based on product formulation, packaging, 3M policies and 3M's understanding of applicable current

regulations. 3M does not guarantee the accuracy of this classification information. This information applies only to transportation classification and not the packaging, labeling or marking requirements. The above information is only for reference. If you are shipping by air or ocean, YOU are advised to check & meet applicable regulatory requirements.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Global inventory status

Contact 3M for more information. The components of this product are in compliance with the chemical notification requirements of TSCA. All required components of this product are listed on the active portion of the TSCA Inventory.

SECTION 16: Other information

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

3M Malaysia SDSs are available at www.3M.com.my