

Hoja de Datos de Seguridad

Derechos Reservados, 2020, 3M Company. Todos los derechos reservados. Se permite copiar y / o descargar esta información con el fin de utilizar adecuadamente los productos de 3M, siempre que: (1) la información se copie por completo sin cambios a menos que se obtenga un acuerdo previo por escrito de 3M, y (2) ni la copia ni el original se revende o se distribuye de otro modo con la intención de obtener una ganancia al respecto.

Grupo del documento: 42-2074-5 Número de versión: 1.00

Fecha de publicación: 09/10/2020 Fecha de reemplazo: Motivo inicial

Identificación del producto químico y de la empresa

1.1. Identificación del producto químico

3MTM FiltekTM P60 - Essential Kit

Números de identificación del producto

XA-0092-1673-1

1.2. Uso recomendado y restricciones de uso

Uso recomendado

Uso industrial

1.3. Detalles del proveedor

Empresa: 3M Chile S.A.

Domicilio: Santa Isabel 1001, Providencia, Santiago, Chile

Teléfono: 56 2 24103000

Correo electrónico: atencionconsumidor@mmm.com

Sitio web: www.3mchile.cl

1.4. Número telefónico de emergencia

CITUC 56 2 26353800

Este producto es un kit o un producto en numerosas partes que consiste de varios componentes empaquetados en forma independiente. Se incluye una HDS para cada uno de dichos componentes. No separe las HDS del componente de la presente portada. Los números de documento de las HDS para los componentes del producto son:

18-9027-6, 29-8286-6, 08-7419-8

LIMITACIÓN DE RESPONSABILIDADES: La información en la presente Hoja de Datos de Seguridad se basa en nuestra experiencia y es correcta hasta donde sabemos a la fecha de la publicación, pero no aceptamos responsabilidad alguna por cualquier pérdida, daño o lesión que resulte de su uso (excepto como lo requiere la ley). La información puede no ser válida para algún uso al que no se hace referencia en la presente Hoja de Datos de Seguridad o uso del producto en combinación con otros materiales. Por dichas razones, es importante que los consumidores realicen sus propias pruebas para que queden satisfechos con la conveniencia del producto para sus propias aplicaciones pretendidas.

Désino, 1 de 1

Hoja de Datos de Seguridad

Derechos Reservados,2022, 3M Company. Todos los derechos reservados. Se permite copiar y/o descargar esta información con el objetivo de utilizar de manera correcta los productos de 3M, solamente si: (1) Se copia la información completa sin ninguna modificación, a menos que se obtenga una autorización por escrito de 3M, y (2) que ni la copia ni el original se revendan o distribuyan con la intención de obtener una ganancia.

Número del grupo de 18-9027-6 Número de versión: 8.00

documento:

Fecha de publicación: 20/12/2022 Fecha de reemplazo: 13/03/2022

SECCIÓN 1: Identificación del producto

1.1. Identificación del producto

3MTM AdperTM Adhesivo Single Bond 2

Números de identificación del producto

LE-F100-0350-7 70-2010-3677-2 70-2010-3787-9 70-2010-5196-1 70-2010-8731-2 70-2014-1113-2 70-2014-1813-7 AH-0105-8146-2 H0-0022-9604-6 H0-0023-2183-6

H0-0023-2779-1 WH-5100-0056-2 XZ-0046-2324-9

1.2. Uso recomendado y restricciones de uso

Uso recomendado

Producto dental, Adhesivo

Restricciones de uso

Sólo para uso por profesionales dentales

1.3. Detalles del proveedor

Dirección: Santa Isabel 1001, Providencia, Santiago, Chile

Teléfono: 56 2 24103000

Correo electrónico: atencionconsumidor@mmm.com

Sitio web: www.3mchile.cl

1.4. Número telefónico de emergencia

CITUC 56 2 26353800

SECCIÓN 2: Identificación de peligros

2.1. Clasificación de la sustancia o de la mezcla.

Líquido inflamable: Categoría 2.

Toxicidad aguda (dérmica): Categoría 5. Irritación/daño grave ocular: Categoría 2A.

Sensitizante cutáneo: Categoría 1.

Toxicidad en la reproducción: Categoría 1B.

2.2. Elementos de la etiqueta.

Palabra de advertencia

Peligro

Símbolos

Llama |Signo de exclamación |Peligro para la salud |

Pictogramas

INDICACIONES DE PELIGRO:

H225 Liquido y vapor altamente inflamable

H313 Puede ser nocivo al estar en contacto con la piel.

H319 Causa irritación ocular grave.

H317 Puede causar una reacción alérgica cutánea. H360 Puede dañar la fertilidad o al feto en gestación.

CONSEJOS DE PRUDENCIA

Prevención:

P201 Obtenga instrucciones especiales antes del uso

P210 Mantener alejado del calor, superficies calientes, chispas llamas al descubierto y otras

fuentes de ignición. No fumar.

P280E Llevar guantes de protección.

Respuesta:

P305 + P351 + P338 EN CASO DE CONTACTO CON LOS OJOS: enjuague con cuidado con agua

durante varios minutos; retire los lentes de contacto si están presentes y es fácil

hacerlo; siga enjuagando.

P308 + P313 Si se expuso o tiene dudas: consiga atención médica.

P333 + P313 Si se presenta irritación cutánea o sarpullido: consiga atención médica. P370 + P378 En caso de incendio: para sofocarlo use un agente apropiado para líquidos

inflamables, como sustancias químicas secas o bióxido de carbono.

Desecho:

P501 Deseche el contenido/recipiente de conformidad con las regulaciones locales,

regionales, nacionales, internacionales correspondientes.

2.3. Otros peligros.

Todo o parte de la clasificación se basa en datos de pruebas de toxicidad.

SECCION 3: Composición/información de los componentes

Este material es una mezcla

Ingrediente	C.A.S. No.	% por peso
Alcohol etílico	64-17-5	25 - 35
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	10 - 20
Sílice Tratada con Silano	Ninguno	10 - 20
Metacrilato de 2-Hidroxietilo (HEMA)	868-77-9	5 - 15
1,3-Dimetacrilato de Glicerol	1830-78-0	5 - 10
Agua	7732-18-5	< 10
Copolímero de ácidos acrílicos e itacónicos	25948-33-8	< 5

Página: 2 de 16

Dimetacrilato de Diuretano (UDMA)	72869-86-4	< 5
Hexafluorofosfato de difenil yodonio	58109-40-3	< 1
4-Dimetil Aminobenzoato de Etilo	10287-53-3	< 0.3
(EDMAB)		

SECCIÓN 4: Primeros auxilios

4.1. Descripción de las medidas de primeros auxilios.

Inhalación:

Lleve a la persona al aire libre. Si siente malestar, consiga atención médica.

Contacto con la piel:

Lave de inmediato con agua y jabón. Retire la ropa contaminada y lávela antes de volver a usarla. Si aparecen signos o síntomas, consiga atención médica.

Contacto con los ojos:

Enjuague de inmediato con abundante agua. Retire los lentes de contacto si es fácil hacerlo y siga enjuagando. Consiga atención médica.

Enjuague la boca. Si siente malestar, consiga atención médica.

4.2. Síntomas y efectos más importantes, tanto agudos como retardados

Reacción alérgica cutánea (enrojecimiento, inflamación, vesículas y prurito).

4.3. Indicación de cualquier atención médica inmediata y tratamientos especiales requeridos.

No relevante

SECCIÓN 5: Medidas contra incendios

5.1. Medios de extinción apropiados

En caso de incendio: para sofocarlo use un agente apropiado para líquidos inflamables, como sustancias químicas secas o bióxido de carbono.

5.2. Peligros especiales que resulten de la sustancia o mezcla

Puede aumentar la presión en los recipientes cerrados y expuestos al calor de un incendio y hacerlos explotar.

Descomposición Peligrosa o Por Productos

Sustancia Monóxido de carbono Dióxido de carbono

Condiciones

Durante la combustión Durante la combustión

5.3. Acciones de protección especial los bomberos o para las personas que combaten el incendio.

Es posible que el agua no sea efectiva para extinguir el incendio, aunque debe usarse para mantener frescas las superficies y recipientes expuestos al incendio y evitar las rupturas explosivas. Use ropa protectora completa, incluyendo casco, aparatos respiratorios autónomos, de presión positiva o de presión, búnker y pantalones, bandas alrededor de los brazos, cintura y piernas, máscara facial y cubierta protectora para las áreas expuestas de la cabeza.

SECCIÓN 6: Medidas en caso de derrame o fuga accidental

6.1. Precauciones que debe adoptar el personal, equipo de protección y procedimientos de emergencia

Evacue el área. Mantenga alejado del calor, chispas, flama abierta y fuentes de calor. - No fumar. Sólo use herramientas que no generen chispa. Ventile el área con aire fresco. En derrames grandes, o derrames en espacios confinados, ventile en forma mecánica para dispersar o extraer los vapores de conformidad con las buenas prácticas de higiene industrial. ¡Advertencia! Un motor puede ser una fuente de ignición que ocasione la explosión o quema de gases o vapores inflamables

Página: 3 de 16

en el área del derrame. Para obtener información relacionada con los peligros físicos y de salud, protección respiratoria, ventilación y equipo de protección personal, remítase a las otras secciones de la presente HDS.

6.2. Precauciones ambientales

Evite liberarlo al medio ambiente.

6.3. Métodos y material para contención y limpieza

Contenga el derrame. Recolecte todo el material derramado que sea posible con herramientas que no generen chispas. Coloque en un recipiente metálico aprobado para transporte por las autoridades correspondientes. Limpie los residuos con un solvente apropiado seleccionado por una persona calificada y autorizada. Ventile el área con aire fresco. Lea y siga las precauciones de seguridad en la etiqueta del solvente y en la HDS. Selle el recipiente. Deseche el material recolectado tan pronto sea posible.

SECCIÓN 7: Manejo y almacenamiento

7.1. Precauciones para una manipulación segura.

Se recomienda una técnica sin contacto. En caso de contacto con la piel, lávela con agua y jabón. Los acrilatos pueden penetrar los guantes de uso común. Si el producto entra en contacto con el guante, retírelo y deséchelo, lave las manos de inmediato con agua y jabón y después vuelva a colocar guantes. No lo manipule hasta que haya leído y comprendido todas las precauciones de seguridad. Mantenga alejado del calor, chispas, flama abierta y fuentes de calor. - No fumar. Adopte las medidas de precaución contra descarga estática. No respire el polvo, humo, gas, neblina, vapores y aerosol. No lo ponga en contacto con los ojos, piel o ropa. No coma, beba o fume cuando use este producto. Lave vigorosamente después de manipularlo. No debe permitirse usar ropa de trabajo contaminada fuera del lugar de trabajo. Evite liberarlo al medio ambiente. Lave la ropa contaminada antes de volver a usarla. Evite el contacto con agentes oxidantes (como cloro, ácido crómico, etc.) No lo introduzca en los ojos. Use equipo de protección personal (guantes, respiradores, etc.) como se requiere hacerlo.

7.2. Condiciones para almacenamiento seguro incluyendo cualquier incompatibilidad.

Almacene en un lugar bien ventilado. Mantenga frío. Mantenga el recipiente bien cerrado. Almacene alejado del calor. Almacene alejado de ácidos. Almacene alejado de agentes oxidantes.

SECCIÓN 8: Controles de exposición/protección personal

8.1. Parámetros de control

Límites de exposición ambiental

Si un componente se divulga en la sección 3, aunque no aparezca en la siguiente tabla, el límite de exposición ocupacional no está disponible para dicho componente.

Ingrediente	C.A.S. No.	Agencia	*	Comentarios adicionales
Alcohol etílico	64-17-5	ACGIH	1.1	A3: Carcinógeno animal confirmado.
Alcohol etílico	64-17-5	D.S. No. 594	LPP(8 horas):1645 mg/m3(875 ppm)	A4: Sin clasificación como carcinógeno humano

ACGIH: Conferencia Estadounidense de Higienistas Industriales Gubernamentales (ACGIH)

AIHA: Asociación Estadounidense de Higiene Industrial

CMRG: Lineamientos recomendados por el fabricante de los productos químicos

D.S. No. 594 : Decreto Supremo N° 594 TWA: Promedio ponderado en tiempo STEL: Límite de exposición a corto plazo

CEIL: Límite superior

LPP: Límite Medio Permisible Ponderado (D.S. nº 594) LPT: Límite Permisible Temporal (D.S. No 594) LPA: Límite Permisible Absoluto (D.S. No 594)

DV: 41 10

8.2. Controles de exposición

8.2.1. Controles de ingeniería.

Use en un área bien ventilada.

8.2.2. Equipos de protección individual (EPIs)

Protección de ojos/cara

Con base en los resultados de una evaluación de exposición, seleccione y use protección en ojos/cara para evitar el contacto. Se recomienda el uso de las siguientes protecciones de ojos/cara:

Lentes de seguridad con protectores laterales

Protección cutánea/mano

Para obtener mayor información acerca de la protección cutánea, remítase a la Sección 7.1.

Protección respiratoria

Ninguno requerido.

SECCIÓN 9: Propiedades físicas y químicas

9.1. Información con base en las propiedades físicas y químicas

Estado físico	Líquido	
Forma física específica:	Líquido	
Color	Blanco-Amarillo claro	
Olor	Acrilato leve	
Límite de olor	Sin datos disponibles	
рН	Sin datos disponibles	
Punto de fusión/punto de congelamiento	No aplicable	
Punto de ebullición/punto inicial de ebullición /	78 °C	
Intervalo de ebullición		
Punto de inflamación	18.5 °C [Método de prueba:Copa cerrada]	
Velocidad de evaporación	Sin datos disponibles	
Inflamabilidad (sólido, gas)	No aplicable	
Límite inferior de inflamabilidad (LEL)	Sin datos disponibles	
Límite superior de inflamabilidad (UEL)	Sin datos disponibles	
Presión de vapor	Sin datos disponibles	
Densidad de Vapor y/o Densidad de Vapor Relativa	Sin datos disponibles	
Densidad	1.075 g/ml	
Densidad relativa	1.075 [Norma de referencia: AGUA = 1]	
Solubilidad en agua	Insignificante	
Solubilidad-no-agua	Sin datos disponibles	
Coeficiente de partición: n-octanol/agua	No aplicable	
Temperatura de autoignición	410 °C	
Temperatura de descomposición	Sin datos disponibles	
Viscosidad / Viscosidad Cinemática	Sin datos disponibles	
Compuestos orgánicos volátiles	Sin datos disponibles	
Porcentaje volátil	Sin datos disponibles	
VOC menos H2O y solventes exentos	Sin datos disponibles	
Peso molecular	Sin datos disponibles	

SECCIÓN 10: Estabilidad y reactividad

10.1. Reactividad

Se considera que este material no reacciona en condiciones normales de uso.

10.2. Estabilidad química

Estable.

10.3. Posibilidad de reacciones peligrosas

No se producirá polimerización peligrosa.

10.4. Condiciones que deben evitarse

Calor

Chispas y/o llamas

10.5. Materiales incompatibles

Ninguno conocido.

10.6 Productos de descomposición peligrosos.

Sustancia

Condiciones

Ninguno conocido.

Remítase a la sección 5.2 para obtener información acerca de los productos peligrosos de descomposición durante la combustión.

SECCIÓN 11. Información toxicológica

La información a continuación puede no ser consistente con la clasificación del material en la Sección 2 si las clasificaciones específicas de los ingredientes están determinadas por la autoridad competente. Además, los datos toxicológicos de los ingredientes pueden no reflejarse en la clasificación del material y/o las señales y síntomas de exposición, porque un ingrediente puede estar presente por debajo del umbral de etiquetado, puede no estar disponible para la exposición o los datos pueden no ser relevantes para el material como un todo.

11.1. Información acerca de efectos toxicológicos

Signos y síntomas de la exposición

Basándose en datos de ensayo y/o en información de los componentes, este material produce los siguientes efectos.

Inhalación:

Irritación en las vías respiratorias: los signos y síntomas pueden incluir tos, estornudos, escurrimiento nasal, cefalea, ronquera y dolor de nariz y garganta.

Contacto con la piel:

Puede ser nocivo al estar en contacto con la piel. No se espera que ocurra contacto con la piel durante el uso del producto que origine una irritación significativa. Reacción alérgica cutánea (no foto-inducida): los signos y síntomas pueden incluir enrojecimiento, inflamación, vesículas y prurito.

Contacto con los ojos:

Irritación ocular grave: los signos y síntomas pueden incluir enrojecimiento significativo, inflamación, lagrimeo, córnea con aspecto nublado y limitaciones en la visión.

Ingestión:

Irritación gastrointestinal: los signos y síntomas pueden incluir dolor abdominal, malestar estomacal, náusea, vómito y diarrea. Puede ocasionar efectos adicionales a la salud (Consulte más adelante).

Efectos a la Salud Adicionales:

Efectos en la reproducción o desarrollo:

Contiene uno o varios productos químicos que pueden causar defectos de nacimiento y ser nocivo en la reproducción.

Información adicional:

Este producto contiene etanol. Las bebidas alcohólicas y el etanol en bebidas alcohólicas están clasificadas por la Agencia Internacional de Investigación del Cáncer como carcinógenas para los humanos. También existen datos que asocian el consumo humano de bebidas alcohólicas con toxicidad en el desarrollo y toxicidad hepática. No se espera que la exposición al metanol durante el uso previsto del producto cause cáncer, toxicidad en el desarrollo o toxicidad hepática.

Datos toxicológicos

Si un componente está descrito en la sección 3 pero no aparece en la tabla de debajo, puede que no haya datos disponibles para ese criterio o que los datos no sean suficientes para su clasificación.

Toxicidad aguda

Nombre	Vía de administra	Especies	Valor
	ción		
Producto en general	Ingestión:		No hay datos disponibles; calculado ATE >5,000
			mg/kg
Producto en general	Dérmico	Conejo	LD50 > 2,000 mg/kg
Alcohol etílico	Dérmico	Conejo	LD50 > 15,800 mg/kg
Alcohol etílico	Inhalación - vapor (4 horas)	Rata	LC50 124.7 mg/l
Alcohol etílico	Ingestión:	Rata	LD50 17,800 mg/kg
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Dérmico	Juicio profesion al	LD50 estimado para ser > 5,000 mg/kg
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Ingestión:	Rata	LD50 > 11,700 mg/kg
Sílice Tratada con Silano	Dérmico	Conejo	LD50 > 5,000 mg/kg
Sílice Tratada con Silano	Inhalación- Polvo/Niebl a (4 horas)	Rata	LC50 > 0.691 mg/l
Sílice Tratada con Silano	Ingestión:	Rata	LD50 > 5,110 mg/kg
Metacrilato de 2-Hidroxietilo (HEMA)	Dérmico	Conejo	LD50 > 5,000 mg/kg
Metacrilato de 2-Hidroxietilo (HEMA)	Ingestión:	Rata	LD50 5,564 mg/kg
1,3-Dimetacrilato de Glicerol	Ingestión:	Rata	LD50 > 2,000 mg/kg
Copolímero de ácidos acrílicos e itacónicos	Ingestión:	Rata	LD50 > 5,000 mg/kg
Copolímero de ácidos acrílicos e itacónicos	Dérmico	peligros similares en la salud	LD50 estimado para ser > 5,000 mg/kg
Dimetacrilato de Diuretano (UDMA)	Dérmico	Juicio profesion al	LD50 estimado para ser > 5,000 mg/kg
Dimetacrilato de Diuretano (UDMA)	Ingestión:	Rata	LD50 > 5,000 mg/kg
Hexafluorofosfato de difenil yodonio	Ingestión:	Rata	LD50 32 mg/kg
4-Dimetil Aminobenzoato de Etilo (EDMAB)	Dérmico	Rata	LD50 > 2,000 mg/kg
4-Dimetil Aminobenzoato de Etilo (EDMAB)	Ingestión:	Rata	LD50 > 2,000 mg/kg

ETA = estimación de toxicidad aguda

Irritación o corrosión cutáneas

ITHACION O COLLOSION CUCANCAS			
Nombre	Especies	Valor	
Alcohol etílico	Conejo	Sin irritación significativa	
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Conejo	Sin irritación significativa	
Sílice Tratada con Silano	Conejo	Sin irritación significativa	
Metacrilato de 2-Hidroxietilo (HEMA)	Conejo	Mínima irritación	
1,3-Dimetacrilato de Glicerol	Conejo	Sin irritación significativa	

Dágina 7 da 1

3MTM AdperTM Adhesivo Single Bond 2

Hexafluorofosfato de difenil yodonio	Conejo	Sin irritación significativa
4-Dimetil Aminobenzoato de Etilo (EDMAB)	Conejo	Sin irritación significativa

Irritación/daño grave en los ojos

Nombre	Especies	Valor
Alcohol etílico	Conejo	Irritante severo
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Datos in	Sin irritación significativa
	vitro	
Sílice Tratada con Silano	Conejo	Sin irritación significativa
Metacrilato de 2-Hidroxietilo (HEMA)	Conejo	Irritante moderado
1,3-Dimetacrilato de Glicerol	Datos in	Irritante severo
	vitro	
Hexafluorofosfato de difenil yodonio	Conejo	Irritante leve
4-Dimetil Aminobenzoato de Etilo (EDMAB)	Conejo	Sin irritación significativa

Sensibilización:

Sensibilización cutánea

Nombre	Especies	Valor
Alcohol etílico	Humano	No clasificado
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Ratón	No clasificado
Sílice Tratada con Silano	Humanos	No clasificado
	y animales	
Metacrilato de 2-Hidroxietilo (HEMA)	Humanos	Sensitizante
	y animales	
1,3-Dimetacrilato de Glicerol	Ratón	No clasificado
Dimetacrilato de Diuretano (UDMA)	Conejillo	Sensitizante
	de indias	
4-Dimetil Aminobenzoato de Etilo (EDMAB)		No clasificado

Sensibilización respiratoria

Para el componente o componentes, actualmente no hay información disponible o la información no es suficiente para la clasificación.

Mutagenicidad de células germinales

Nombre	Vía de administ ración	Valor
Alcohol etílico	In vitro	Existen algunos datos positivos, pero no son suficientes para la clasificación
Alcohol etílico	In vivo	Existen algunos datos positivos, pero no son suficientes para la clasificación
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	In vitro	No es mutágeno
Sílice Tratada con Silano	In vitro	No es mutágeno
Metacrilato de 2-Hidroxietilo (HEMA)	In vivo	No es mutágeno
Metacrilato de 2-Hidroxietilo (HEMA)	In vitro	Existen algunos datos positivos, pero no son suficientes para la clasificación
Hexafluorofosfato de difenil yodonio	In vitro	Existen algunos datos positivos, pero no son suficientes para la clasificación
4-Dimetil Aminobenzoato de Etilo (EDMAB)	In vivo	No es mutágeno
4-Dimetil Aminobenzoato de Etilo (EDMAB)	In vitro	Existen algunos datos positivos, pero no son suficientes para la clasificación

Carcinogenicidad

Nombre	Vía de administr ación	Especies	Valor
Alcohol etílico	Ingestión:	Varias	Existen algunos datos positivos, pero no son

Página: 8 de 16

		especies animales	suficientes para la clasificación
Sílice Tratada con Silano	No especifica do	Ratón	Existen algunos datos positivos, pero no son suficientes para la clasificación

Toxicidad en la reproducción

Efectos sobre la reproducción y/o sobre el desarrollo

Nombre	Vía de administ ración	Valor	Especies	Resultados de la prueba	Duración de la exposición
Alcohol etílico	Inhalació n	No clasificado para desarrollo	Rata	NOAEL 38 mg/l	durante la gestación
Alcohol etílico	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 5,200 mg/kg/día	previo al apareamiento y durante la gestación
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 1,000 mg/kg/día	durante la gestación
Sílice Tratada con Silano	Ingestión:	No clasificado para reproducción femenina	Rata	NOAEL 509 mg/kg/día	1 generación
Sílice Tratada con Silano	Ingestión:	No clasificado para reproducción masculina	Rata	NOAEL 497 mg/kg/día	1 generación
Sílice Tratada con Silano	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 1,350 mg/kg/día	durante la organogénesis
Metacrilato de 2-Hidroxietilo (HEMA)	Ingestión:	No clasificado para reproducción femenina	Rata	NOAEL 1,000 mg/kg/día	previo al apareamiento y durante la gestación
Metacrilato de 2-Hidroxietilo (HEMA)	Ingestión:	No clasificado para reproducción masculina	Rata	NOAEL 1,000 mg/kg/día	49 días
Metacrilato de 2-Hidroxietilo (HEMA)	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 1,000 mg/kg/día	previo al apareamiento y durante la gestación
4-Dimetil Aminobenzoato de Etilo (EDMAB)	Ingestión:	No clasificado para reproducción femenina	Rata	NOAEL 600 mg/kg/día	previo al apareamiento hasta la lactancia
4-Dimetil Aminobenzoato de Etilo (EDMAB)	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 50 mg/kg/día	previo al apareamiento hasta la lactancia
4-Dimetil Aminobenzoato de Etilo (EDMAB)	Ingestión:	Tóxico para la reproducción masculina	Rata	NOAEL 50 mg/kg/día	53 días

Órganos específicos

Toxicidad en órgano específico - exposición única

Nombre	Vía de administ ración	Órganos específicos	Valor	Especies	Resultados de la prueba	Duración de la exposición
Alcohol etílico	Inhalació n	irritación respiratoria	Existen algunos datos positivos, pero no son suficientes para la clasificación	Humano	LOAEL 9.4 mg/l	no disponible
Alcohol etílico	Inhalació n	depresión del sistema nervioso central.	No clasificado	Humanos y animales	NOAEL no disponible	
Alcohol etílico	Ingestión:	depresión del sistema nervioso central.	No clasificado	Varias especies animales	NOAEL no disponible	
Alcohol etílico	Ingestión:	riñón o vejiga	No clasificado	Perro	NOAEL	

Página: 9 de 16

					3,000 mg/kg
Copolímero de ácidos	Ingestión:	sistema nervioso	No clasificado	Rata	NOAEL
acrílicos e itacónicos					5,000 mg/kg
Hexafluorofosfato de	Inhalació	irritación	No clasificado	No	Irritación
difenil yodonio	n	respiratoria		disponibl	Ambiguo
				e	

Гохісіdad en órgano e Nombre	Vía de administr ación	Órganos específicos	Valor	Especies	Resultados de la prueba	Duración de la exposición
Alcohol etílico	Inhalación	hígado	Existen algunos datos positivos, pero no son suficientes para la clasificación	Conejo	LOAEL 124 mg/l	365 días
Alcohol etílico	Inhalación	sistema hematopoyético sistema inmunológico	No clasificado	Rata	NOAEL 25 mg/l	14 días
Alcohol etílico	Ingestión:	hígado	Existen algunos datos positivos, pero no son suficientes para la clasificación	Rata	LOAEL 8,000 mg/kg/day	4 meses
Alcohol etílico	Ingestión:	riñón o vejiga	No clasificado	Perro	NOAEL 3,000 mg/kg/day	7 días
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Ingestión:	sistema endocrino sistema hematopoyético hígado corazón piel tracto gastrointestinal Hueso, dientes, uñas o cabello sistema inmunológico músculos sistema nervioso ojos riñón o vejiga aparato respiratorio sistema vascular	No clasificado	Rata	NOAEL 1,000 mg/kg/day	90 días
Sílice Tratada con Silano	Inhalación	aparato respiratorio silicosis	No clasificado	Humano	NOAEL No disponible	exposición ocupacional
Copolímero de ácidos acrílicos e itacónicos	Ingestión:	sistema endocrino sistema hematopoyético hígado	No clasificado	Rata	NOAEL 200 mg/kg/day	28 días
Copolímero de ácidos acrílicos e itacónicos	Ingestión:	corazón Hueso, dientes, uñas o cabello sistema inmunológico músculos sistema nervioso ojos riñón o vejiga aparato respiratorio sistema vascular	No clasificado	Rata	NOAEL 2,000 mg/kg/day	28 días
4-Dimetil Aminobenzoato de Etilo (EDMAB)	Ingestión:	sistema hematopoyético	Existen algunos datos positivos, pero no son suficientes para la clasificación	Rata	NOAEL 74 mg/kg/day	28 días
4-Dimetil Aminobenzoato de Etilo (EDMAB)	Ingestión:	hígado corazón sistema endocrino tracto gastrointestinal Hueso, dientes, uñas o cabello sistema inmunológico músculos sistema nervioso ojos riñón o vejiga aparato respiratorio sistema vascular	No clasificado	Rata	NOAEL 900 mg/kg/day	28 días

Página: 10 de 16

Peligro de aspiración

Para el componente o componentes, actualmente no hay información disponible o la información no es suficiente para la clasificación.

Por favor póngase en contacto en la dirección o el teléfono que aparecen en la primera página de la HDS para obtener información toxicológica adicional sobre este material y/o sus componentes.

SECCIÓN 12: Información ecotoxicológica

La siguiente información puede no ser consistente con la clasificación del material en la Sección 2 si las clasificaciones del ingrediente específico son obligatorias por parte de una autoridad competente. La información adicional que conlleve a la clasificación del material en la Sección 2 está disponible por solicitud; además, los datos del destino ambiental y efectos de los ingredientes pueden no reflejarse en esta sección porque un ingrediente puede estar presente por debajo del límite para etiquetarlo, no se espera que el ingrediente esté disponible en la exposición o no se considera que los datos sean relevantes en la totalidad del material.

12.1. Toxicidad

Peligro acuático agudo:

De conformidad con los criterios de GHS no es tóxico agudo para la vida acuática.

Peligro acuático crónico:

De conformidad con los criterios de GHS no es tóxico crónico para la vida acuática.

Sin datos disponibles de la prueba del producto

Material	N° CAS	Organismo	Tipo	Exposición	Criterio de valoración de la prueba	Resultados de la prueba
Alcohol etílico	64-17-5	Carpa de cabeza grande	Experimental	96 horas	LC50	14,200 mg/l
Alcohol etílico	64-17-5	Pez	Experimental	96 horas	LC50	11,000 mg/l
Alcohol etílico	64-17-5	Algas verdes	Experimental	72 horas	EC50	275 mg/l
Alcohol etílico	64-17-5	Pulga de agua	Experimental	48 horas	LC50	5,012 mg/l
Alcohol etílico	64-17-5	Algas verdes	Experimental	72 horas	ErC10	11.5 mg/l
Alcohol etílico	64-17-5	Pulga de agua	Experimental	10 días	NOEC	9.6 mg/l
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Carpa común	Compuesto análogo	96 horas	Sin tóxicos en lmt de sol de agua	> 100 mg/l
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Algas verdes	Extremo no alcanzado	96 horas	EC50	> 100 mg/l
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Algas verdes	Experimental	96 horas	EC10	1.1 mg/l
Sílice Tratada con Silano	Ninguno	N/D	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D
Metacrilato de 2- Hidroxietilo (HEMA)	868-77-9	Rodaballo	Compuesto análogo	96 horas	LC50	833 mg/l
Metacrilato de 2- Hidroxietilo (HEMA)	868-77-9	Carpa de cabeza grande	Experimental	96 horas	LC50	227 mg/l
Metacrilato de 2- Hidroxietilo	868-77-9	Algas verdes	Experimental	72 horas	EC50	710 mg/l

Página: 11 de 16

(HEMA)						
Metacrilato de 2- Hidroxietilo (HEMA)	868-77-9	Pulga de agua	Experimental	48 horas	EC50	380 mg/l
Metacrilato de 2- Hidroxietilo (HEMA)	868-77-9	Algas verdes	Experimental	72 horas	NOEC	160 mg/l
Metacrilato de 2- Hidroxietilo (HEMA)	868-77-9	Pulga de agua	Experimental	21 días	NOEC	24.1 mg/l
Metacrilato de 2- Hidroxietilo (HEMA)	868-77-9	N/D	Experimental	16 horas	EC50	> 3,000 mg/l
Metacrilato de 2- Hidroxietilo (HEMA)	868-77-9	N/D	Experimental	18 horas	LD50	< 98 mg por kg de peso
1,3-Dimetacrilato de Glicerol	1830-78-0	Olomina	Experimental	96 horas	LC50	43.2 mg/l
Copolímero de ácidos acrílicos e itacónicos	25948-33-8	N/D	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D
Dimetacrilato de Diuretano (UDMA)	72869-86-4	Algas verdes	Extremo no alcanzado	72 horas	CEr50	> 100 mg/l
Dimetacrilato de Diuretano (UDMA)	72869-86-4	Pulga de agua	Experimental	48 horas	EC50	> 100 mg/l
Dimetacrilato de Diuretano (UDMA)	72869-86-4	Pez cebra	Experimental	96 horas	LC50	10.1 mg/l
Dimetacrilato de Diuretano (UDMA)	72869-86-4	Algas verdes	Extremo no alcanzado	72 horas	ErC10	> 100 mg/l
Hexafluorofosfato de difenil yodonio	58109-40-3	Pulga de agua	Experimental	48 horas	EC50	9.5 mg/l
4-Dimetil Aminobenzoato de Etilo (EDMAB)	10287-53-3	Barro activado	Experimental	3 horas	EC50	> 1,000 mg/l
4-Dimetil Aminobenzoato de Etilo (EDMAB)	10287-53-3	Algas verdes	Experimental	72 horas	EL50	2.8 mg/l
4-Dimetil Aminobenzoato de Etilo (EDMAB)	10287-53-3	Trucha arcoíris	Experimental	96 horas	LC50	1.9 mg/l
4-Dimetil Aminobenzoato de Etilo (EDMAB)	10287-53-3	Pulga de agua	Experimental	48 horas	EC50	4.5 mg/l
4-Dimetil Aminobenzoato de Etilo (EDMAB)	10287-53-3	Algas verdes	Experimental	72 horas	ErC10	0.71 mg/l

12.2. Persistencia y degradabilidad

Material	N° CAS	Tipo de prueba	Duración	Tipo de estudio	Resultados de la prueba	Protocolo
Alcohol etílico	64-17-5	Experimental Biodegradación	14 días	Demanda biológica de oxígeno	89 %BOD/ThOD	OCDE 301C - MITI (I)
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Experimental Biodegradación	28 días	Demanda biológica de oxígeno	21 %BOD/ThOD	similar a OCDE 301F
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Experimental Hidrólisis		Vida media hidrolítica (pH 7)	29 días (t 1/2)	
Sílice Tratada con Silano	Ninguno	Datos no disponibles-	N/D	N/D	N/D	N/D

Página: 12 de 16

		insuficientes				
Metacrilato de 2- Hidroxietilo (HEMA)	868-77-9	Experimental Biodegradación	28 días	Demanda biológica de oxígeno	84 %BOD/COD	OCDE 301D - Prueba en frasco cerrado
Metacrilato de 2- Hidroxietilo (HEMA)	868-77-9	Experimental Hidrólisis		pH básico hidrolítico	10.9 días (t 1/2)	OCDE 111 Hidrólisis en función del pH
1,3-Dimetacrilato de Glicerol	1830-78-0	Experimental Biodegradación	28 días	Demanda biológica de oxígeno	84 %BOD/ThOD	OCDE 301F - Respirometría manomérica
Copolímero de ácidos acrílicos e itacónicos	25948-33-8	Datos no disponibles- insuficientes	N/D	N/D	N/D	N/D
Dimetacrilato de Diuretano (UDMA)	72869-86-4	Experimental Biodegradación	28 días	Evolución de dióxido de carbono		OCDE 301B - Sturm modificada o CO2
Hexafluorofosfato de difenil yodonio	58109-40-3	Datos no disponibles- insuficientes	N/D	N/D	N/D	N/D
4-Dimetil Aminobenzoato de Etilo (EDMAB)	10287-53-3	Experimental Biodegradación	28 días	Evolución de dióxido de carbono	40 Evolución% CO2 / evolución THCO2	OCDE 301B - Sturm modificada o CO2
4-Dimetil Aminobenzoato de Etilo (EDMAB)	10287-53-3	Experimental Hidrólisis		Vida media hidrolítica (pH 7)	>1 años (t 1/2)	OCDE 111 Hidrólisis en función del pH

12.3. Potencial bioacumulativo

Material	Nº CAS	Tipo de	Duración	Tipo de	Resultados de	Protocolo
		prueba		estudio	la prueba	
Alcohol etílico	64-17-5	Experimental Bioconcentración		Logaritmo del coeficiente de partición octanol/H2O	-0.35	
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Experimental Bioconcentración		Logaritmo del coeficiente de partición octanol/H2O	4.63	
Sílice Tratada con Silano	Ninguno	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Metacrilato de 2- Hidroxietilo (HEMA)	868-77-9	Experimental Bioconcentración		Logaritmo del coeficiente de partición octanol/H2O	0.42	OCDE 107- Método del matraz agitado
1,3-Dimetacrilato de Glicerol	1830-78-0	Estimado Bioconcentración		Logaritmo del coeficiente de partición octanol/H2O	2.05	
Copolímero de ácidos acrílicos e itacónicos	25948-33-8	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Dimetacrilato de Diuretano (UDMA)	72869-86-4	Experimental Bioconcentración		Logaritmo del coeficiente de partición octanol/H2O	3.39	
Hexafluorofosfato de difenil yodonio	58109-40-3	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
4-Dimetil Aminobenzoato de Etilo (EDMAB)	10287-53-3	Experimental Bioconcentración		Logaritmo del coeficiente de partición octanol/H2O	3.2	OECD 117 log Kow método HPLC

Página: 13 de 16

12.4. Movilidad en el suelo

Para obtener mayores informes, contacte al fabricante

12.5 Otros efectos adversos

Sin información disponible

SECCIÓN 13: Información sobre la eliminación de los productos

13.1. Métodos de eliminación/desecho

Deseche el contenido/recipiente de conformidad con las reglamentaciones locales, regionales, nacionales, internacionales.

Incinere el producto sin curar en una instalación autorizada para incinerar desperdicios. Como alternativa para desecharlo, recurra a instalaciones autorizadas para desechar desperdicios. Si no cuenta con otras opciones para desecharlo, el producto de desperdicio curado o polimerizado por completo puede colocarse en un vertedero diseñado adecuadamente para desperdicio industrial.

SECCIÓN 14: Información de transporte

Transporte Maritimo (IMDG)

Número UN:UN 1133

Nombre de envío apropiado: Adhesivos

Nombre técnico: Ninguno asignado.

Clase/División de peligro:3

Riesgo secundario: Ninguno asignado.

Grupo de empaque:II

Cantidad limitada: Ninguno asignado. Contaminante marino: Ninguno asignado.

Nombre técnico del contaminante marino: Ninguno asignado.

Otras descripciones de materiales peligrosos:

Ninguno asignado.

Transporte aéreo (IATA)

Número UN:UN 1133

Nombre de envío apropiado: Adhesivos

Nombre técnico: Ninguno asignado.

Clase/División de peligro:3

Riesgo secundario: Ninguno asignado.

Grupo de empaque:II

Cantidad limitada: Ninguno asignado. Contaminante marino: Ninguno asignado.

Nombre técnico del contaminante marino: Ninguno asignado.

Otras descripciones de materiales peligrosos:

Ninguno asignado.

TRANSPORTE TERRESTRE

Prohibido:No relevante **Número UN:**UN 1133

Nombre de envío apropiado: Adhesivos

Nombre técnico: Ninguno asignado.

Clase/División de peligro:3

Riesgo secundario: Ninguno asignado.

Grupo de empaque:II

pr: 14 t 14

Cantidad limitada: No relevante Contaminante marino: No relevante

Nombre técnico del contaminante marino: No relevante Otras descripciones de materiales peligrosos: No relevante

Las clasificaciones para el transporte se proporcionan como un servicio al cliente. Para envíos, USTED es responsable de cumplir con todas las leyes y regulaciones correspondientes, que incluyen la clasificación apropiada de transporte y empaquetado. Las clasificaciones para el transporte se basan en la fórmula del producto, empaque, políticas de 3M y conocimiento por parte de 3M de las regulaciones vigentes apropiadas. 3M no garantiza la precisión de la presente información de clasificación. Esta información sólo aplica para la clasificación de transporte y no aplica para los requisitos de empaquetado, etiquetado o comercialización. La información anterior sólo es para referencia. Si realiza envíos por aire o mar, USTED está advertido de revisar y cumplir con los requisitos regulatorios correspondientes.

SECCIÓN 15: Información reglamentaria

15.1. Regulaciones/legislación de seguridad, salud y ambiental específicas para la sustancia o mezcla

Estatus de inventario global

Para obtener más información, contacte a 3M.

Normas chilenas aplicables

NCh2245, NCh382, NCh1411/4, NCh2190, D.S. nº 594, D.S. nº 43, D.S. nº 148, D.S. nº 298, Ley nº 19.496

El destinatario debe comprobar la posible existencia de normativas locales aplicables al producto químico.

SECCIÓN 16: Otra información

16.1. Información adicional de seguridad

Clasificación de peligro NFPA

Salud: 2 Inflamabilidad: 3 Inestabilidad: 0 Peligros especiales: Ninguno

Las clasificaciones de peligro de la Asociación Nacional de Protección contra Incendios (NFPA) están diseñadas para que las use el personal de respuesta en emergencias para atender los peligros que se presentan a corto plazo, exposición aguda a un material en condiciones de incendio, salpicadura o emergencias similares. Las clasificaciones de peligro se basan principalmente en las propiedades físicas y tóxicas inherentes del material, aunque también incluyen las propiedades tóxicas de los productos de combustión o descomposición que se sabe se generan en cantidades significativas.

16.2. Cambios de revisión

Número del grupo de documento:18-9027-6Número de versión:8.00Fecha de publicación:20/12/2022Fecha de reemplazo:13/03/2022

16.3. Clave de abreviaturas y acrónimos

ACGIH: Conferencia Estadounidense de Higienistas Industriales Gubernamentales (ACGIH)

AIHA: Asociación Estadounidense de Higiene Industrial

ATE: Estimación de la toxicidad aguda

C.A.S. No.: Número del Chemical Abstracts Service

CEIL: Límite superior

CEPA: Agencia Canadiense de Protección del Medio Ambiente

CITUC: Centro de Información Toxicológica de la Universidad Católica CMRG: Directrices recomendadas por los fabricantes de productos químicos

D.S. No.: Decreto Supremo Número

GHS: Sistema Globalmente Armonizado de Clasificación y Etiquetado de Productos Químicos, 5ª edición revisada 2013

HMIS: Sistema de Identificación de Materiales Peligrosos IATA: Asociación Internacional de Transporte Aéreo

IMDG: Código Marítimo Internacional de Mercancías Peligrosas

LC50: Concentración letal media

3MTM AdperTM Adhesivo Single Bond 2

LD50: Mediana de la dosis letal
LEL: Límite inferior de explosividad
LPA: Límite Absoluto Permisible
LPP: Límite de peso admisible
LPT: Límite temporal admisible
MSDS: Hoja de Seguridad

N/D: No aplicable N/D: Sin datos NCh: Norma chilena

NFPA: Asociación Nacional de Protección contra Incendios

NOAEL: Nivel de efecto adverso no observado

PPE: Equipo de protección personal

STEL (límite de exposición a corto plazo) : Límite de exposición a corto plazo

TSCA: Ley de Control de Sustancias Tóxicas

TWA: Media ponderada en el tiempo UEL: Límite superior de explosividad

Número de la ONU: Número de las Naciones Unidas

VOC: Compuestos orgánicos volátiles

LIMITACIÓN DE RESPONSABILIDADES: La información provista en esta Hoja de Datos de Seguridad (HDS por sus siglas en español) representa el mejor saber y entender de 3M a la fecha de su publicación, por lo que 3M no será responsable de los posibles daños, perjuicios o pérdidas, derivados de su uso, excepto cuando la ley lo establezca. Los usos no descritos aquí o la combinación con otros materiales no fueron considerados en la preparación de este documento. Por esta razón, es responsabilidad del usuario de esta información que realice su propia evaluación para asegurarse la adecuación del producto para un propósito en particular. Esta HDS tiene el objetivo de transmitir información sobre salud y seguridad. El importador autorizado es responsable de cumplir los requisitos regulatorios, incluidos pero no limitados a registro/ notificaciones del producto, rastreo del volumen de sustancias y posibles registros/notificaciones de sustancias controladas.

Hoja de Datos de Seguridad

Derechos Reservados,2021, 3M Company. Todos los derechos reservados. Se permite copiar y/o descargar esta información con el objetivo de utilizar de manera correcta los productos de 3M, solamente si: (1) Se copia la información completa sin ninguna modificación, a menos que se obtenga una autorización por escrito de 3M, y (2) que ni la copia ni el original se revendan o distribuyan con la intención de obtener una ganancia.

Número del grupo de 08-7419-8 Número de versión: 7.00

documento:

Fecha de publicación: 04/11/2021 Fecha de reemplazo: 13/10/2016

SECCIÓN 1: Identificación del producto

1.1. Identificación del producto

PASTA RESTAURADORA POSTERIOR 3M® FILTEK® P60

Números de identificación del producto

70-2010-2550-2	70-2010-2551-0	70-2010-2552-8	70-2010-2580-9	70-2010-2581-7
70-2010-2582-5	70-2010-2605-4	70-2010-2606-2	70-2010-2607-0	70-2010-3298-7
70-2010-3299-5	70-2010-3300-1	70-2010-5197-9	70-2010-5198-7	70-2010-5199-5
70-2010-8787-4	70-2010-8788-2	70-2010-8789-0	70-2010-9844-2	70-2010-9845-9
70-2010-9846-7	70-2014-1110-8	70-2014-1111-6	70-2014-1112-4	H0-0019-1424-3
H0-0019-1426-8	H0-0019-1428-4	HB-0045-1207-3	HB-0045-1208-1	HB-0045-1211-5

1.2. Uso recomendado y restricciones de uso

Uso recomendado

Producto dental, Restaurador

Restricciones de uso

Sólo para uso por profesionales dentales

1.3. Detalles del proveedor

Dirección: Santa Isabel 1001, Providencia, Santiago, Chile

Teléfono: 56 2 24103000

Correo electrónico: atencionconsumidor@mmm.com

Sitio web: www.3mchile.cl

1.4. Número telefónico de emergencia

CITUC 56 2 26353800

SECCIÓN 2: Identificación de peligros

2.1. Clasificación de la sustancia o de la mezcla.

Toxicidad aguda (bucal): Categoría 5. Sensitizante cutáneo: Categoría 1.

2.2. Elementos de la etiqueta.

Este producto no está clasificado como peligroso según NCh382.

Palabra de advertencia

Atención

Símbolos

Signo de exclamación |

Pictogramas

INDICACIONES DE PELIGRO:

H303 Puede ser nocivo en caso de deglución. H317 Puede causar una reacción alérgica cutánea.

CONSEJOS DE PRUDENCIA

Prevención:

P280E Llevar guantes de protección.

Respuesta:

P333 + P313 Si se presenta irritación cutánea o sarpullido: consiga atención médica.

2.3. Otros peligros.

Ninguno conocido.

SECCIÓN 3: Composición/información de los componentes

Este material es una mezcla

Ingrediente	C.A.S. No.	% por peso
Cerámica Tratada con Silano	444758-98-9	75 - 85
Dimetacrilato de éter diglicidílico de	1565-94-2	1 - 10
bisfenol A (BISGMA)		
Dimetacrilato de bisfenol A y	41637-38-1	1 - 10
polietilenglicol (BISEMA-6)		
Dimetacrilato de Diuretano (UDMA)	72869-86-4	1 - 10
Óxido de aluminio	1344-28-1	< 5
Trietilenglicol dimetacrilato (TEGDMA)	109-16-0	< 5

Página: 2 de 14

SECCIÓN 4: Primeros auxilios

4.1. Descripción de las medidas de primeros auxilios.

Inhalación:

Lleve a la persona al aire libre. Si siente malestar, consiga atención médica.

Contacto con la piel:

Lave de inmediato con agua y jabón. Retire la ropa contaminada y lávela antes de volver a usarla. Si aparecen signos o síntomas, consiga atención médica.

Contacto con los ojos:

Enjuague con abundante agua. Retire los lentes de contacto si es fácil hacerlo y siga enjuagando. Si persisten los signos o síntomas, consiga atención médica.

En caso de deglución:

Enjuague la boca. Si siente malestar, consiga atención médica.

4.2. Síntomas y efectos más importantes, tanto agudos como retardados

Reacción alérgica cutánea (enrojecimiento, inflamación, vesículas y prurito).

4.3. Indicación de cualquier atención médica inmediata y tratamientos especiales requeridos.

No relevante

SECCIÓN 5: Medidas contra incendios

5.1. Medios de extinción apropiados

En caso de incendio: Use un agente contra incendios para material combustible ordinario, como agua o espuma.

5.2. Peligros especiales que resulten de la sustancia o mezcla

Ninguno inherente en este producto.

Descomposición Peligrosa o Por Productos

Sustancia Monóxido de carbono Dióxido de carbono

Condiciones

Durante la combustión Durante la combustión

5.3. Acciones de protección especial los bomberos o para las personas que combaten el incendio.

Use ropa protectora completa, incluyendo casco, aparatos respiratorios autónomos, de presión positiva o de presión, búnker y pantalones, bandas alrededor de los brazos, cintura y piernas, máscara facial y cubierta protectora para las áreas expuestas de la cabeza.

SECCIÓN 6 : Medidas en caso de derrame o fuga accidental

6.1. Precauciones que debe adoptar el personal, equipo de protección y procedimientos de emergencia

Evacue el área. Ventile el área con aire fresco. En derrames grandes, o derrames en espacios confinados, ventile en forma mecánica para dispersar o extraer los vapores de conformidad con las buenas prácticas de higiene industrial. Para obtener información relacionada con los peligros físicos y de salud, protección respiratoria, ventilación y equipo de protección personal, remítase a las otras secciones de la presente HDS.

6.2. Precauciones ambientales

Evite liberarlo al medio ambiente.

6.3. Métodos y material para contención y limpieza

Recolecte todo el material derramado que sea posible. Coloque en un recipiente cerrado aprobado para transporte por las autoridades correspondientes. Limpie los residuos. Selle el recipiente. Deseche el material recolectado tan pronto sea

Página: 3 de 14

posible.

SECCIÓN 7: Manejo y almacenamiento

7.1. Precauciones para una manipulación segura.

Se recomienda una técnica sin contacto. En caso de contacto con la piel, lávela con agua y jabón. Los acrilatos pueden penetrar los guantes de uso común. Si el producto entra en contacto con el guante, retírelo y deséchelo, lave las manos de inmediato con agua y jabón y después vuelva a colocar guantes. Evite respirar el polvo, humo, gas, neblina, vapores o aerosol. No coma, beba o fume cuando use este producto. Lave vigorosamente después de manipularlo. No debe permitirse usar ropa de trabajo contaminada fuera del lugar de trabajo. Lave la ropa contaminada antes de volver a usarla. No lo introduzca en los ojos.

7.2. Condiciones para almacenamiento seguro incluyendo cualquier incompatibilidad.

Sin requisitos especiales de almacenamiento.

SECCIÓN 8: Controles de exposición/protección personal

8.1. Parámetros de control

Límites de exposición ambiental

Si un componente se divulga en la sección 3, aunque no aparezca en la siguiente tabla, el límite de exposición ocupacional no está disponible para dicho componente.

Ingrediente	C.A.S. No.	Agencia	Tipo de límite	Comentarios adicionales
Aluminio, compuestos insolubles	1344-28-1	ACGIH	TWA (fracción respirable): 1 mg/m3	A4: Sin clasificación como carcinógeno humano
CAS NO SEQ117921	1344-28-1	ACGIH	TWA (partículas inhalables): 10 mg / m3	
CAS NO SEQ117922	1344-28-1	ACGIH	TWA (partículas respirables): 3 mg / m3	
POLVO, INERTE O MOLESTO	1344-28-1	D.S. No. 594	LPP(como polvo total):8 mg/m3;LPP(como polvo respirable):2,4 mg/m3	

ACGIH: Conferencia Estadounidense de Higienistas Industriales Gubernamentales (ACGIH)

AIHA: Asociación Estadounidense de Higiene Industrial

CMRG: Lineamientos recomendados por el fabricante de los productos químicos

D.S. No. 594 : Decreto Supremo Nº 594 TWA: Promedio ponderado en tiempo STEL: Límite de exposición a corto plazo

CEIL: Límite superior

LPP: Límite Medio Permisible Ponderado (D.S. nº 594) LPT: Límite Permisible Temporal (D.S. No 594) LPA: Límite Permisible Absoluto (D.S. No 594)

8.2. Controles de exposición

8.2.1. Controles de ingeniería.

Use en un área bien ventilada.

8.2.2. Equipos de protección individual (EPIs)

Protección de ojos/cara

Con base en los resultados de una evaluación de exposición, seleccione y use protección en ojos/cara para evitar el contacto. Se recomienda el uso de las siguientes protecciones de ojos/cara:

Página: 4 de 14

PASTA RESTAURADORA POSTERIOR 3M® FILTEK® P60

Lentes de seguridad con protectores laterales

Protección cutánea/mano

Para obtener mayor información acerca de la protección cutánea, remítase a la Sección 7.1.

Protección respiratoria

Ninguno requerido.

SECCIÓN 9: Propiedades físicas y químicas

9.1. Información con base en las propiedades físicas y químicas

	información con base en las propiedades físicas y químicas					
Estado físico	Sólido					
Forma física específica:	Pasta					
Color	Blanco					
Olor	Acrilato leve					
Límite de olor	Sin datos disponibles					
pH	No aplicable					
Punto de fusión/punto de congelamiento	Sin datos disponibles					
Punto de ebullición/punto inicial de ebullición /	No aplicable					
Intervalo de ebullición						
Punto de inflamación	Sin punto de inflamación					
Velocidad de evaporación	No aplicable					
Inflamabilidad (sólido, gas)	No clasificado					
Límite inferior de inflamabilidad (LEL)	Sin datos disponibles					
Límite superior de inflamabilidad (UEL)	Sin datos disponibles					
Presión de vapor	No aplicable					
Densidad de Vapor y/o Densidad de Vapor Relativa	No aplicable					
Densidad	2.1 g/cm3					
Densidad relativa	2.1 [Norma de referencia: AGUA = 1]					
Solubilidad en agua	Insignificante					
Solubilidad-no-agua	Sin datos disponibles					
Coeficiente de partición: n-octanol/agua	No aplicable					
Temperatura de autoignición	Sin datos disponibles					
Temperatura de descomposición	Sin datos disponibles					
Viscosidad / Viscosidad Cinemática	Aproximadamente 300,000 mPa-s					
Compuestos orgánicos volátiles	Sin datos disponibles					
Porcentaje volátil	Sin datos disponibles					
VOC menos H2O y solventes exentos	Sin datos disponibles					
Peso molecular	Sin datos disponibles					

Nanopartículas

Este material contiene nanopartículas.

SECCIÓN 10: Estabilidad y reactividad

10.1. Reactividad

Se considera que este material no reacciona en condiciones normales de uso.

10.2. Estabilidad química

Estable.

10.3. Posibilidad de reacciones peligrosas

PASTA RESTAURADORA POSTERIOR 3M® FILTEK® P60

No se producirá polimerización peligrosa.

10.4. Condiciones que deben evitarse

Ninguno conocido.

10.5. Materiales incompatibles

Ninguno conocido.

10.6 Productos de descomposición peligrosos.

Sustancia

Condiciones

Ninguno conocido.

Remítase a la sección 5.2 para obtener información acerca de los productos peligrosos de descomposición durante la combustión.

SECCIÓN 11. Información toxicológica

La información a continuación puede no ser consistente con la clasificación del material en la Sección 2 si las clasificaciones específicas de los ingredientes están determinadas por la autoridad competente. Además, los datos toxicológicos de los ingredientes pueden no reflejarse en la clasificación del material y/o las señales y síntomas de exposición, porque un ingrediente puede estar presente por debajo del umbral de etiquetado, puede no estar disponible para la exposición o los datos pueden no ser relevantes para el material como un todo.

11.1. Información acerca de efectos toxicológicos

Signos y síntomas de la exposición

Basándose en datos de ensayo y/o en información de los componentes, este material produce los siguientes efectos.

Inhalación:

Este producto puede tener un olor característico; sin embargo, no se anticipa que genere efectos en la salud.

Contacto con la piel:

No se espera que ocurra contacto con la piel durante el uso del producto que origine una irritación significativa. Reacción alérgica cutánea (no foto-inducida): los signos y síntomas pueden incluir enrojecimiento, inflamación, vesículas y prurito.

Contacto con los ojos:

No se espera que ocurra contacto con los ojos durante el uso del producto que origine una irritación significativa.

Ingestión:

Puede ser nocivo en caso de deglución. Irritación gastrointestinal: los signos y síntomas pueden incluir dolor abdominal, malestar estomacal, náusea, vómito y diarrea.

Datos toxicológicos

Si un componente está descrito en la sección 3 pero no aparece en la tabla de debajo, puede que no haya datos disponibles para ese criterio o que los datos no sean suficientes para su clasificación.

Toxicidad aguda

Toxiciuau aguua			
Nombre	Vía de	Especies	Valor
	administra		
	ción		
Producto en general	Ingestión:		No hay datos disponibles; calculado ATE2,000 - 5,000 mg/kg
Cerámica Tratada con Silano	Dérmico		LD50 estimado para ser > 5,000 mg/kg
Cerámica Tratada con Silano	Ingestión:		LD50 estimado para ser 2,000 - 5,000 mg/kg
Dimetacrilato de bisfenol A y polietilenglicol (BISEMA-6)	Dérmico	Juicio	LD50 estimado para ser > 5,000 mg/kg

Página: 6 de 14

		profesion al	
Dimetacrilato de Diuretano (UDMA)	Dérmico	Juicio profesion al	LD50 estimado para ser > 5,000 mg/kg
Dimetacrilato de bisfenol A y polietilenglicol (BISEMA-6)	Ingestión:	Rata	LD50 > 2,000 mg/kg
Dimetacrilato de Diuretano (UDMA)	Ingestión:	Rata	LD50 > 5,000 mg/kg
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Dérmico	Juicio profesion al	LD50 estimado para ser > 5,000 mg/kg
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Ingestión:	Rata	LD50 > 11,700 mg/kg
Trietilenglicol dimetacrilato (TEGDMA)	Dérmico	Juicio profesion al	LD50 estimado para ser > 5,000 mg/kg
Trietilenglicol dimetacrilato (TEGDMA)	Ingestión:	Rata	LD50 10,837 mg/kg
Óxido de aluminio	Dérmico		LD50 estimado para ser > 5,000 mg/kg
Óxido de aluminio	Inhalación- Polvo/Niebl a (4 horas)	Rata	LC50 > 2.3 mg/l
Óxido de aluminio	Ingestión:	Rata	LD50 > 5,000 mg/kg

ETA = estimación de toxicidad aguda

Irritación o corrosión cutáneas

Nombre	Especies	Valor
Cerámica Tratada con Silano	compuest	Sin irritación significativa
	os	
	similares	
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Conejo	Sin irritación significativa
Trietilenglicol dimetacrilato (TEGDMA)	Conejillo	Irritante leve
	de indias	
Óxido de aluminio	Conejo	Sin irritación significativa

Irritación/daño grave en los ojos

Nombre	Especies	Valor
Cerámica Tratada con Silano	compuest	Irritante leve
	os	
	similares	
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Datos in	Sin irritación significativa
	vitro	
Trietilenglicol dimetacrilato (TEGDMA)	Juicio	Irritante moderado
	profesion	
	al	
Óxido de aluminio	Conejo	Sin irritación significativa

Sensibilización:

Sensibilización cutánea

Nombre	Especies	Valor
Cerámica Tratada con Silano	compuest	No clasificado
	os similares	
Discoult of the Control of the Contr		N 1 '0 1
Dimetacrilato de bisfenol A y polietilenglicol (BISEMA-6)	Conejillo	No clasificado
	de indias	
Dimetacrilato de Diuretano (UDMA)	Conejillo	Sensitizante
	de indias	
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Ratón	No clasificado
Trietilenglicol dimetacrilato (TEGDMA)	Humanos	Sensitizante
	y	
	animales	

Sensibilización respiratoria

<u>_</u>

Para el componente o componentes, actualmente no hay información disponible o la información no es suficiente para la clasificación.

Mutagenicidad de células germinales

Nombre	Vía de	Valor
	administ	
	ración	
Dimetacrilato de bisfenol A y polietilenglicol (BISEMA-6)	In vitro	No es mutágeno
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	In vitro	No es mutágeno
Trietilenglicol dimetacrilato (TEGDMA)	In vitro	Existen algunos datos positivos, pero no son
		suficientes para la clasificación
Óxido de aluminio	In vitro	No es mutágeno

Carcinogenicidad

8			
Nombre	Vía de	Especies	Valor
	administr		
	ación		
Cerámica Tratada con Silano	Inhalación	compuest	Existen algunos datos positivos, pero no son
		os	suficientes para la clasificación
		similares	
Trietilenglicol dimetacrilato (TEGDMA)	Dérmico	Ratón	No es carcinógeno
Óxido de aluminio	Inhalación	Rata	No es carcinógeno

Toxicidad en la reproducción

Efectos sobre la reproducción y/o sobre el desarrollo

Nombre	Vía de administ ración	Valor	Especies	Resultados de la prueba	Duración de la exposición
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 1,000 mg/kg/day	durante la gestación
Trietilenglicol dimetacrilato (TEGDMA)	Ingestión:	No clasificado para reproducción femenina	Ratón	NOAEL 1 mg/kg/day	1 generación
Trietilenglicol dimetacrilato (TEGDMA)	Ingestión:	No clasificado para reproducción masculina	Ratón	NOAEL 1 mg/kg/day	1 generación
Trietilenglicol dimetacrilato (TEGDMA)	Ingestión:	No clasificado para desarrollo	Ratón	NOAEL 1 mg/kg/day	1 generación

Órganos específicos

Toxicidad en órgano específico - exposición única

Para el componente o componentes, actualmente no hay información disponible o la información no es suficiente para la clasificación.

Toxicidad en órgano específico - exposición repetida

Nombre	Vía de administr ación	Órganos específicos	Valor	Especies	Resultados de la prueba	Duración de la exposición
Cerámica Tratada con Silano	Inhalación	fibrosis pulmonar	No clasificado	os similares	NOAEL No disponible	
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	Ingestión:	sistema endocrino sistema hematopoyético hígado corazón piel tracto gastrointestinal Hueso, dientes, uñas o cabello sistema inmunológico músculos sistema nervioso ojos	No clasificado	Rata	NOAEL 1,000 mg/kg/day	90 días

Página: 8 de 14

		riñón o vejiga aparato respiratorio sistema vascular				
Trietilenglicol dimetacrilato (TEGDMA)	Dérmico	riñón o vejiga sangre	No clasificado	Ratón	NOAEL 833 mg/kg/day	78 semanas
Óxido de aluminio	Inhalación	neumoconiosis	Existen algunos datos positivos, pero no son suficientes para la clasificación	Humano	NOAEL No disponible	exposición ocupacional
Óxido de aluminio	Inhalación	fibrosis pulmonar	No clasificado	Humano	NOAEL No disponible	exposición ocupacional

Peligro de aspiración

Para el componente o componentes, actualmente no hay información disponible o la información no es suficiente para la clasificación.

Por favor póngase en contacto en la dirección o el teléfono que aparecen en la primera página de la HDS para obtener información toxicológica adicional sobre este material y/o sus componentes.

SECCIÓN 12: Información ecotoxicológica

La siguiente información puede no ser consistente con la clasificación del material en la Sección 2 si las clasificaciones del ingrediente específico son obligatorias por parte de una autoridad competente. La información adicional que conlleve a la clasificación del material en la Sección 2 está disponible por solicitud; además, los datos del destino ambiental y efectos de los ingredientes pueden no reflejarse en esta sección porque un ingrediente puede estar presente por debajo del límite para etiquetarlo, no se espera que el ingrediente esté disponible en la exposición o no se considera que los datos sean relevantes en la totalidad del material.

12.1. Toxicidad

Peligro acuático agudo:

De conformidad con los criterios de GHS no es tóxico agudo para la vida acuática.

Peligro acuático crónico:

De conformidad con los criterios de GHS no es tóxico crónico para la vida acuática.

Sin datos disponibles de la prueba del producto

Material	N° CAS	Organismo	Tipo	Exposición	Criterio de valoración de la prueba	Resultados de la prueba
Cerámica Tratada con Silano	444758-98-9		Los datos no están disponibles o son insuficientes para la clasificación			N/A
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Carpa común	Compuesto análogo	96 horas	Sin tóxicos en lmt de sol de agua	> 100 mg/l
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Algas verdes	Extremo no alcanzado	96 horas	EC50	> 100 mg/l

Página: 9 de 14

	1	T	ı	T	
565-94-2	Algas verdes	Experimental	96 horas	EC10	1.1 mg/l
11637-38-1	Barro activado	Estimado	3 horas	EC50	> 1,000 mg/l
11037 30 1	Builo activado	Estimado	5 Horas	Leso	1,000 mg/1
11.62= 20.1		- · ·	1		100 //
11637-38-1	Algas verdes	Estimado	72 horas		> 100 mg/l
				agua	
11637-38-1	Trucha arcoíris	Estimado	96 horas	Sin tóxicos en	> 100 mg/l
				lmt de sol de	
				agua	
11637-38-1	Algas verdes	Estimado	72 horas	Sin tóxicos en	> 100 mg/l
110 <i>3</i>	I ligas veides	Limado	/2 110103	1	100 1118/1
				agua	
2869-86-4	Algas verdes		72 horas	CEr50	> 100 mg/l
		alcanzado			
2869-86-4	Pulga de agua	Experimental	48 horas	EC50	> 100 mg/l
		1			
72869-86-4	Pez cebra	Experimental	96 horas	LC50	10.1 mg/l
2007 00 1	22 00014	Emperimentar	y o Horas	Leso	10.1 1119,1
12060 06 4	Alasa sandas	Entrope	72 h a ma a	E-C10	> 100 == ~/1
2009-00-4	Aigas veides		/2 noras	EICIU	> 100 mg/l
		aicanzado			
344-28-1	Pez	Experimental	96 horas	LC50	> 100 mg/l
344-28-1	Algas verdes	Experimental	72 horas	EC50	> 100 mg/l
		1			
344-28-1	Pulga de agua	Experimental	48 horas	LC50	> 100 mg/l
311 20 1	l uigu uo uguu	Emperimentar	To nords	Eco	100 mg/1
244 29 1	Algos vardas	Evnorimental	72 horas	NOEC	> 100 mg/l
344-20-1	Aigas veides	Experimental	/2 1101 as	NOEC	100 mg/1
00.16.0	A 1 1	F	72.1	EGG	100 //
09-16-0	Algas verdes	Experimental	/2 horas	EC50	> 100 mg/l
09-16-0	Pez cebra	Experimental	96 horas	LC50	16.4 mg/l
09-16-0	Algas verdes	Experimental	72 horas	NOEC	18.6 mg/l
.0, 100	1 1 5 4 5 1 4 6 5		, 2 110143	1.020	
00.16.0	Dulas de esse	E	21 4/22	NOEC	22 /1
U9-16-U	Pulga de agua	Experimental	21 dias	NUEC	32 mg/l
		1			1
	1637-38-1 1637-38-1 1637-38-1 1637-38-1 2869-86-4 2869-86-4 2869-86-4 344-28-1 344-28-1	1637-38-1 Barro activado 1637-38-1 Algas verdes 1637-38-1 Trucha arcoíris 1637-38-1 Algas verdes 2869-86-4 Pulga de agua 2869-86-4 Pez cebra 2869-86-4 Algas verdes 344-28-1 Pez 344-28-1 Algas verdes 344-28-1 Algas verdes 99-16-0 Algas verdes 09-16-0 Pez cebra	1637-38-1 Barro activado Estimado 1637-38-1 Algas verdes Estimado 1637-38-1 Trucha arcoíris Estimado 1637-38-1 Algas verdes Estimado 2869-86-4 Algas verdes Experimental 2869-86-4 Pez cebra Experimental 2869-86-4 Algas verdes Extremo no alcanzado 344-28-1 Algas verdes Experimental 344-28-1 Experimental 344-28-1 Algas verdes Experimental 344-28-1 Experimental	1637-38-1 Barro activado Estimado 3 horas 1637-38-1 Algas verdes Estimado 72 horas 1637-38-1 Trucha arcoíris Estimado 96 horas 1637-38-1 Algas verdes Estimado 72 horas 2869-86-4 Algas verdes Experimental 48 horas 2869-86-4 Pez cebra Experimental 96 horas 2869-86-4 Algas verdes Extremo no alcanzado 72 horas 2869-86-4 Pez cebra Experimental 96 horas 2869-86-4 Algas verdes Extremo no alcanzado 72 horas 344-28-1 Algas verdes Experimental 96 horas 344-28-1 Algas verdes Experimental 72 horas 39-16-0 Algas verdes Experimental 72 horas 09-16-0 Pez cebra Experimental 96 horas 09-16-0 Rez cebra Experimental 96 horas	1637-38-1 Barro activado Estimado 3 horas EC50 1637-38-1 Algas verdes Estimado 72 horas Int de sol de agua 1637-38-1 Trucha arcoíris Estimado 96 horas Sin tóxicos en Int de sol de agua 1637-38-1 Algas verdes Estimado 72 horas Sin tóxicos en Int de sol de agua 2869-86-4 Algas verdes Extremo no alcanzado 72 horas CEr50 2869-86-4 Pez cebra Experimental 48 horas EC50 2869-86-4 Algas verdes Extremo no alcanzado 72 horas LC50 2869-86-4 Algas verdes Extremo no alcanzado 72 horas ErC10 344-28-1 Pez Experimental 96 horas LC50 344-28-1 Algas verdes Experimental 72 horas EC50 340-16-0 Algas verdes Experimental 72 horas EC50 340-16-0 Pez cebra Experimental 72 horas EC50 341-28-1 Algas verdes Experimental 72 horas EC50 342-28-1 Algas verdes Experimental 72 horas EC50 344-28-1 Algas verdes Experimental 72 horas NOEC 344-28-1 Algas verdes Experimental 72 horas EC50 345-28-38-4 Algas verdes Experimental 72 horas NOEC 346-38-4 Algas verdes Experimental 72 horas NOEC

12.2. Persistencia y degradabilidad

Material	Nº CAS	Tipo de prueba	Duración	Tipo de estudio	Resultados de la prueba	Protocolo
Cerámica Tratada con Silano	444758-98-9	Datos no disponibles- insuficientes			N/A	
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Experimental Hidrólisis		Vida media hidrolítica (pH 7)	29 días (t 1/2)	
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Experimental Biodegradación	28 días	Demanda biológica de oxígeno	21 % BOD/ThBOD	similar a OCDE 301F
Dimetacrilato de bisfenol A y polietilenglicol (BISEMA-6)	41637-38-1	Experimental Biodegradación	28 días	Demanda biológica de oxígeno	24 % BOD/ThBOD	OCDE 301D - Prueba en frasco cerrado
Dimetacrilato de Diuretano (UDMA)	72869-86-4	Experimental Biodegradación	28 días	Evolución de dióxido de carbono	22 % De evolución de CO2 / evolución de THCO2 (no pasa la ventana de 10 días)	OCDE 301B - Sturm modificada o CO2
Óxido de aluminio	1344-28-1	Datos no disponibles-insuficientes			N/A	
Trietilenglicol dimetacrilato (TEGDMA)	109-16-0	Experimental Biodegradación	28 días	Evolución de dióxido de carbono	85 % del peso	OCDE 301B - Sturm modificada o CO2

12.3. Potencial bioacumulativo

Material	Nº CAS	Tipo de prueba	Duración	Tipo de estudio	Resultados de la prueba	Protocolo
Cerámica Tratada con Silano	444758-98-9	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Dimetacrilato de éter diglicidílico de bisfenol A (BISGMA)	1565-94-2	Experimental Bioconcentraci ón		Logaritmo del coeficiente de partición octanol/H2O	4.63	
Dimetacrilato de bisfenol A y polietilenglicol (BISEMA-6)	41637-38-1	Estimado Bioconcentraci ón		Factor de bioacumulació n	6.6	Est: Factor de bioconcentración
Dimetacrilato	41637-38-1	Experimental		Logaritmo del	≥4.66	OECD 117 log Kow

Página: 11 de 14

de bisfenol A y polietilenglicol (BISEMA-6)		Bioconcentraci ón		coeficiente de partición octanol/H2O		método HPLC
Dimetacrilato de Diuretano (UDMA)	72869-86-4	Experimental Bioconcentraci ón		Logaritmo del coeficiente de partición octanol/H2O	3.39	Método no estándar
Óxido de aluminio	1344-28-1	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Trietilenglicol dimetacrilato (TEGDMA)	109-16-0	Experimental Bioconcentraci ón		Logaritmo del coeficiente de partición octanol/H2O	2.3	Método no estándar

12.4. Movilidad en el suelo

Para obtener mayores informes, contacte al fabricante

12.5 Otros efectos adversos

Sin información disponible

SECCIÓN 13: Información sobre la eliminación de los productos

13.1. Métodos de eliminación/desecho

Deseche el contenido/recipiente de conformidad con las reglamentaciones locales, regionales, nacionales, internacionales.

Deseche el producto de desperdicio en una instalación autorizada para desperdicio industrial. Como alternativa para desecharlo, incinere en una instalación autorizada para incinerar desperdicios.

SECCIÓN 14: Información de transporte

Transporte Maritimo (IMDG)

Número UN: Ninguno asignado.

Nombre de envío apropiado: Ninguno asignado.

Nombre técnico: Ninguno asignado.

Clase/División de peligro: Ninguno asignado.

Riesgo secundario: Ninguno asignado. Grupo de empaque: Ninguno asignado. Cantidad limitada: Ninguno asignado. Contaminante marino: Ninguno asignado.

Nombre técnico del contaminante marino: Ninguno asignado.

Otras descripciones de materiales peligrosos:

No restringido, de acuerdo con el Código Marítimo Internacional de Mercancías Peligrosas (IMDG) 2.10.2.7, excepción de contaminante marino.

Transporte aéreo (IATA)

Número UN: Ninguno asignado.

Nombre de envío apropiado: Ninguno asignado.

n/: 10 t . 1

PASTA RESTAURADORA POSTERIOR 3M® FILTEK® P60

Nombre técnico: Ninguno asignado.

Clase/División de peligro: Ninguno asignado.

Riesgo secundario: Ninguno asignado. Grupo de empaque: Ninguno asignado. Cantidad limitada: Ninguno asignado. Contaminante marino: Ninguno asignado.

Nombre técnico del contaminante marino: Ninguno asignado.

Otras descripciones de materiales peligrosos:

Sin restricciones, según la Disposición especial A197, excepción de sustancias peligrosas para el medio ambiente.

TRANSPORTE TERRESTRE

Prohibido:No relevante **Número UN:**No relevante

Nombre de envío apropiado: No relevante

Nombre técnico: No relevante

Clase/División de peligro: No relevante Riesgo secundario: No relevante Grupo de empaque: No relevante Cantidad limitada: No relevante Contaminante marino: No relevante

Nombre técnico del contaminante marino: No relevante Otras descripciones de materiales peligrosos: No relevante

Las clasificaciones para el transporte se proporcionan como un servicio al cliente. Para envíos, USTED es responsable de cumplir con todas las leyes y regulaciones correspondientes, que incluyen la clasificación apropiada de transporte y empaquetado. Las clasificaciones para el transporte se basan en la fórmula del producto, empaque, políticas de 3M y conocimiento por parte de 3M de las regulaciones vigentes apropiadas. 3M no garantiza la precisión de la presente información de clasificación. Esta información sólo aplica para la clasificación de transporte y no aplica para los requisitos de empaquetado, etiquetado o comercialización. La información anterior sólo es para referencia. Si realiza envíos por aire o mar, USTED está advertido de revisar y cumplir con los requisitos regulatorios correspondientes.

SECCIÓN 15: Información reglamentaria

15.1. Regulaciones/legislación de seguridad, salud y ambiental específicas para la sustancia o mezcla

Estatus de inventario global

Para obtener más información, contacte a 3M.

Normas chilenas aplicables

NCh2245, NCh382, NCh1411/4, NCh2190, D.S. nº 594, D.S. nº 43, D.S. nº 148, D.S. nº 298, Ley nº 19.496

El destinatario debe comprobar la posible existencia de normativas locales aplicables al producto químico.

SECCIÓN 16: Otra información

16.1. Información adicional de seguridad

Clasificación de peligro NFPA

Salud: 2 Inflamabilidad: 1 Inestabilidad: 0 Peligros especiales: Ninguno

Las clasificaciones de peligro de la Asociación Nacional de Protección contra Incendios (NFPA) están diseñadas para que las use el personal de respuesta en emergencias para atender los peligros que se presentan a corto plazo, exposición aguda a un material en condiciones de incendio, salpicadura o emergencias similares. Las clasificaciones de peligro se basan principalmente en las propiedades físicas y tóxicas inherentes del material, aunque también incluyen las propiedades tóxicas de los productos de combustión o descomposición que se sabe se generan en cantidades significativas.

Dr.: 12.1 14

16.2. Cambios de revisión

Número del grupo de documento: 08-7419-8 Número de versión: 7.00 Fecha de publicación: 04/11/2021 Fecha de reemplazo: 13/10/2016

16.3. Clave de abreviaturas y acrónimos

ACGIH: Conferencia Estadounidense de Higienistas Industriales Gubernamentales (ACGIH)

AIHA: Asociación Estadounidense de Higiene Industrial

ATE: Estimación de la toxicidad aguda

C.A.S. No.: Número del Chemical Abstracts Service

CEIL: Límite superior

CEPA: Agencia Canadiense de Protección del Medio Ambiente

CITUC: Centro de Información Toxicológica de la Universidad Católica CMRG: Directrices recomendadas por los fabricantes de productos químicos

D.S. No.: Decreto Supremo Número

GHS: Sistema Globalmente Armonizado de Clasificación y Etiquetado de Productos Químicos, 5ª edición revisada 2013

HMIS: Sistema de Identificación de Materiales Peligrosos IATA: Asociación Internacional de Transporte Aéreo

IMDG: Código Marítimo Internacional de Mercancías Peligrosas

LC50: Concentración letal media LD50: Mediana de la dosis letal LEL: Límite inferior de explosividad LPA: Límite Absoluto Permisible LPP: Límite de peso admisible LPT: Límite temporal admisible MSDS: Hoja de Seguridad

N/D: No aplicable N/D: Sin datos NCh: Norma chilena

NFPA: Asociación Nacional de Protección contra Incendios

NOAEL: Nivel de efecto adverso no observado

PPE: Equipo de protección personal

STEL (límite de exposición a corto plazo): Límite de exposición a corto plazo

TSCA: Ley de Control de Sustancias Tóxicas

TWA: Media ponderada en el tiempo UEL: Límite superior de explosividad

Número de la ONU: Número de las Naciones Unidas

VOC: Compuestos orgánicos volátiles

LIMITACIÓN DE RESPONSABILIDADES: La información en la presente Hoja de Datos de Seguridad se basa en nuestra experiencia y es correcta hasta donde sabemos a la fecha de la publicación, pero no aceptamos responsabilidad alguna por cualquier pérdida, daño o lesión que resulte de su uso (excepto como lo requiere la ley). La información puede no ser válida para algún uso al que no se hace referencia en la presente Hoja de Datos de Seguridad o uso del producto en combinación con otros materiales. Por dichas razones, es importante que los consumidores realicen sus propias pruebas para que queden satisfechos con la conveniencia del producto para sus propias aplicaciones pretendidas.

Hoja de Datos de Seguridad

Derechos Reservados, 2022, 3M Company. Todos los derechos reservados. Se permite copiar y/o descargar esta información con el objetivo de utilizar de manera correcta los productos de 3M, solamente si: (1) Se copia la información completa sin ninguna modificación, a menos que se obtenga una autorización por escrito de 3M, y (2) que ni la copia ni el original se revendan o distribuyan con la intención de obtener una ganancia.

Número del grupo de 29-8286-6 Número de versión: 5.00

documento:

Fecha de publicación: 19/12/2022 Fecha de reemplazo: 14/03/2022

SECCIÓN 1: Identificación del producto

1.1. Identificación del producto

3M[™] Scotchbond[™] Universal Etchant (41263) / Grabador universal Scotchbond[™] de 3M[™] (41263)

Números de identificación del producto

LE-F100-1014-5 LE-F100-1040-4 70-2011-3906-3 70-2011-4006-1 70-2011-4007-9

70-2011-4411-3 70-2011-4412-1 70-2011-4413-9 TM-0000-3517-9

1.2. Uso recomendado y restricciones de uso

Uso recomendado

Producto dental, Gel de grabado

Restricciones de uso

Sólo para uso por profesionales dentales

1.3. Detalles del proveedor

Dirección: Santa Isabel 1001, Providencia, Santiago, Chile

Teléfono: 56 2 24103000

Correo electrónico: atencionconsumidor@mmm.com

www.3mchile.cl Sitio web:

1.4. Número telefónico de emergencia

CITUC 56 2 26353800

SECCIÓN 2: Identificación de peligros

2.1. Clasificación de la sustancia o de la mezcla.

Corrosivo para metal: Categoría 1. Toxicidad aguda (bucal): Categoría 5. Corrosión/irritación cutánea: Categoría 1C. Irritación/daño ocular grave: Categoría 1.

2.2. Elementos de la etiqueta.

Palabra de advertencia

Peligro

Símbolos

Corrosión |

Pictogramas

INDICACIONES DE PELIGRO:

H290 Puede ser corrosivo para metales H303 Puede ser nocivo en caso de deglución.

Causa graves quemaduras cutáneas y daño ocular. H314

CONSEJOS DE PRUDENCIA

Prevención:

P260 No respire el polvo, humo, gas, neblina, vapores, aerosol.

P280D Use guantes de protección, ropa de protección y protección en ojos/cara.

Respuesta:

P303 + P361 + P353 EN CASO DE CONTACTO CON LA PIEL (o cabello): retire de inmediato toda la

ropa contaminada; enjuague la piel con agua/regadera.

EN CASO DE CONTACTO CON LOS OJOS: enjuague con cuidado con agua P305 + P351 + P338

durante varios minutos; retire los lentes de contacto si están presentes y es fácil

hacerlo; siga enjuagando.

P310 Llame de inmediato al CENTRO DE INFORMACIÓN TOXICOLÓGICA o al

médico.

2.3. Otros peligros.

Puede causar quemaduras químicas gastrointestinales.

SECCIÓN 3: Composición/información de los componentes

Este material es una mezcla

Ingrediente	C.A.S. No.	% por peso
Agua	7732-18-5	50 - 65
Ácido Fosfórico	7664-38-2	30 - 40
Sílice amorfa sintética (Libre de cristales)	112945-52-5	1 - 10

Página: 2 de 13

Polietilenglicol	25322-68-3	1 - 5
OXIDO DE ALUMINIO	1344-28-1	< 2

SECCIÓN 4: Primeros auxilios

4.1. Descripción de las medidas de primeros auxilios.

Inhalación:

Lleve a la persona al aire libre. Si siente malestar, consiga atención médica.

Contacto con la piel:

Enjuague de inmediato con abundante agua durante 15 minutos, por lo menos. Retire la ropa contaminada. Consiga atención médica de inmediato. Lave la ropa antes de volver a usarla.

Contacto con los ojos:

Enjuague de inmediato con abundante agua durante 15 minutos, por lo menos. Retire los lentes de contacto si es fácil hacerlo y siga enjuagando. Consiga atención médica de inmediato.

En caso de deglución:

Enjuague la boca. No induzca el vómito. Consiga atención médica de inmediato.

4.2. Síntomas y efectos más importantes, tanto agudos como retardados

Quemaduras de piel (enrojecimiento localizado, hinchazón, salpullido, dolor intenso, ampollas y destrucción del tejido). Daño ocular grave (opacidad de la córnea, dolor severo, rasgado, úlceras y afectación o pérdida de la vista).

4.3. Indicación de cualquier atención médica inmediata y tratamientos especiales requeridos.

No relevante

SECCIÓN 5: Medidas contra incendios

5.1. Medios de extinción apropiados

En caso de incendio: Use un agente contra incendios para material combustible ordinario, como agua o espuma.

5.2. Peligros especiales que resulten de la sustancia o mezcla

Ninguno inherente en este producto.

Descomposición Peligrosa o Por Productos

<u>Sustancia</u> Monóxido de carbono Dióxido de carbono

Condiciones

Durante la combustión Durante la combustión

5.3. Acciones de protección especial los bomberos o para las personas que combaten el incendio.

Use ropa protectora completa, incluyendo casco, aparatos respiratorios autónomos, de presión positiva o de presión, búnker y pantalones, bandas alrededor de los brazos, cintura y piernas, máscara facial y cubierta protectora para las áreas expuestas de la cabeza.

SECCIÓN 6: Medidas en caso de derrame o fuga accidental

6.1. Precauciones que debe adoptar el personal, equipo de protección y procedimientos de emergencia

Evacue el área. Ventile el área con aire fresco. En derrames grandes, o derrames en espacios confinados, ventile en forma mecánica para dispersar o extraer los vapores de conformidad con las buenas prácticas de higiene industrial. Para obtener información relacionada con los peligros físicos y de salud, protección respiratoria, ventilación y equipo de protección personal, remítase a las otras secciones de la presente HDS.

6.2. Precauciones ambientales

Evite liberarlo al medio ambiente.

 \mathbf{p}_{i} : 2.1 \mathbf{q}_{i}

6.3. Métodos y material para contención y limpieza

Contenga el derrame. Recolecte todo el material derramado que sea posible. Coloque en un recipiente metálico aprobado para usar en transporte por las autoridades correspondientes. El recipiente debe estar recubierto con plástico de polietileno o contar con un liner de plástico para tambores hecho de polietileno. Limpie los residuos con agua. Tape sin sellar durante 48 horas. Deseche el material recolectado tan pronto sea posible.

SECCIÓN 7: Manejo y almacenamiento

7.1. Precauciones para una manipulación segura.

Evite el contacto prolongado o repetido con la piel. No respire el polvo, humo, gas, neblina, vapores y aerosol. No coma, beba o fume cuando use este producto. Lave vigorosamente después de manipularlo. Evite liberarlo al medio ambiente. Lave la ropa contaminada antes de volver a usarla. No lo introduzca en los ojos.

7.2. Condiciones para almacenamiento seguro incluyendo cualquier incompatibilidad.

Almacene alejado del calor. Consérvelo en el recipiente original. Almacene en un recipiente resistente a la corrosión con liner interno resistente. Almacene alejado de bases fuertes.

SECCIÓN 8: Controles de exposición/protección personal

8.1. Parámetros de control

Límites de exposición ambiental

Si un componente se divulga en la sección 3, aunque no aparezca en la siguiente tabla, el límite de exposición ocupacional no está disponible para dicho componente.

Ingrediente	C.A.S. No.	Agencia	Tipo de límite	Comentarios adicionales
Sílice	112945-52- 5	D.S. No. 594	LPP(fracción respirable):0.08 mg/m3	
SILICIO, AMORFO	112945-52- 5	D.S. No. 594	LPP(fracción respirable):0.16 mg/m3	
Aluminio, compuestos insolubles	1344-28-1	ACGIH	TWA (fracción respirable): 1 mg/m3	A4: Sin clasificación como carcinógeno humano
POLVO, INERTE O MOLESTO	1344-28-1	D.S. No. 594	LPP(como polvo total):8 mg/m3;LPP(como polvo respirable):2,4 mg/m3	
Polietilenglicol	25322-68-3	AIHA	TWA: 10 mg/m3	
Ácido Fosfórico	7664-38-2	ACGIH	TWA:1 mg/m3;STEL:3 mg/m3	

ACGIH: Conferencia Estadounidense de Higienistas Industriales Gubernamentales (ACGIH)

AIHA: Asociación Estadounidense de Higiene Industrial

CMRG: Lineamientos recomendados por el fabricante de los productos químicos

D.S. No. 594 : Decreto Supremo Nº 594 TWA: Promedio ponderado en tiempo

STEL: Límite de exposición a corto plazo

CEIL: Límite superior

LPP: Límite Medio Permisible Ponderado (D.S. nº 594)

LPT: Límite Permisible Temporal (D.S. No 594)

LPA: Límite Permisible Absoluto (D.S. No 594)

8.2. Controles de exposición

8.2.1. Controles de ingeniería.

Use en un área bien ventilada.

8.2.2. Equipos de protección individual (EPIs)

Protección de ojos/cara

Con base en los resultados de una evaluación de exposición, seleccione y use protección en ojos/cara para evitar el contacto. Se recomienda el uso de las siguientes protecciones de ojos/cara:

Lentes de seguridad con protectores laterales

Protección cutánea/mano

Para obtener mayor información acerca de la protección cutánea, remítase a la Sección 7.1.

Protección respiratoria

Ninguno requerido.

SECCIÓN 9: Propiedades físicas y químicas

9.1. Información con base en las propiedades físicas y químicas

nformación con base en las propiedades físicas y químicas					
Estado físico	Líquido				
Forma física específica:	Gel				
Color	Azul				
Olor	Ligero olor, Olor característico				
Límite de olor	Sin datos disponibles				
рН	< 1				
Punto de fusión/punto de congelamiento	No aplicable				
Punto de ebullición/punto inicial de ebullición /	Sin datos disponibles				
Intervalo de ebullición					
Punto de inflamación	> 100 °C [Método de prueba:Copa cerrada]				
Velocidad de evaporación	Sin datos disponibles				
Inflamabilidad (sólido, gas)	No aplicable				
Límite inferior de inflamabilidad (LEL)	Sin datos disponibles				
Límite superior de inflamabilidad (UEL)	Sin datos disponibles				
Presión de vapor	Sin datos disponibles				
Densidad de Vapor y/o Densidad de Vapor Relativa	Sin datos disponibles				
Densidad	1.1 g/ml - 1.2 g/ml				
Densidad relativa	1.1 - 1.2 [Norma de referencia:AGUA = 1]				
Solubilidad en agua	Completo				
Solubilidad-no-agua	Sin datos disponibles				
Coeficiente de partición: n-octanol/agua	Sin datos disponibles				
Temperatura de autoignición	Sin datos disponibles				
Temperatura de descomposición	Sin datos disponibles				
Viscosidad / Viscosidad Cinemática	Sin datos disponibles				
Compuestos orgánicos volátiles	Sin datos disponibles				
Porcentaje volátil	Sin datos disponibles				
VOC menos H2O y solventes exentos	Sin datos disponibles				
Peso molecular	Sin datos disponibles				

SECCIÓN 10: Estabilidad y reactividad

10.1. Reactividad

Este material puede reaccionar con ciertos agentes en determinadas condiciones; remítase a los encabezados restantes en esta sección.

3MTM ScotchbondTM Universal Etchant (41263) / Grabador universal ScotchbondTM de 3MTM (41263)

10.2. Estabilidad química

Estable.

10.3. Posibilidad de reacciones peligrosas

No se producirá polimerización peligrosa.

10.4. Condiciones que deben evitarse

Calor

10.5. Materiales incompatibles

Bases fuertes

10.6 Productos de descomposición peligrosos.

Sustancia

Condiciones

Ninguno conocido.

Remítase a la sección 5.2 para obtener información acerca de los productos peligrosos de descomposición durante la combustión.

SECCIÓN 11. Información toxicológica

La información a continuación puede no ser consistente con la clasificación del material en la Sección 2 si las clasificaciones específicas de los ingredientes están determinadas por la autoridad competente. Además, los datos toxicológicos de los ingredientes pueden no reflejarse en la clasificación del material y/o las señales y síntomas de exposición, porque un ingrediente puede estar presente por debajo del umbral de etiquetado, puede no estar disponible para la exposición o los datos pueden no ser relevantes para el material como un todo.

11.1. Información acerca de efectos toxicológicos

Signos v síntomas de la exposición

Basándose en datos de ensayo y/o en información de los componentes, este material produce los siguientes efectos.

Inhalación:

Este producto puede tener un olor característico; sin embargo, no se anticipa que genere efectos en la salud.

Contacto con la piel:

Corrosivo (quemaduras cutáneas): los signos y síntomas pueden incluir enrojecimiento localizado, inflamación, sarpullido, dolor intenso, vesículas, ulceración y destrucción tisular.

Contacto con los ojos:

Corrosivo (quemaduras oculares): los signos y síntomas pueden incluir córnea con aspecto nublado, quemaduras químicas, dolor grave, lagrimeo, ulceraciones, visión significativamente limitada o pérdida completa de la vista.

Ingestión:

Puede ser nocivo en caso de deglución. Corrosión gastrointestinal: los signos y síntomas pueden incluir dolor intenso en boca, garganta y abdomen; náusea; vómito y diarrea; también puede presentar sangre en heces o vómito.

Datos toxicológicos

Si un componente está descrito en la sección 3 pero no aparece en la tabla de debajo, puede que no haya datos disponibles para ese criterio o que los datos no sean suficientes para su clasificación.

Toxicidad aguda

Nombre	Vía de	Especies	Valor
	administra		

Página: 6 de 13

	ción		
Producto en general	Dérmico		No hay datos disponibles; calculado ATE >5,000
			mg/kg
Producto en general	Ingestión:		No hay datos disponibles; calculado ATE >2,000 -
			=5,000 mg/kg
Ácido Fosfórico	Dérmico	Conejo	LD50 2,740 mg/kg
Ácido Fosfórico	Ingestión:	Rata	LD50 1,530 mg/kg
Sílice amorfa sintética (Libre de cristales)	Dérmico	Conejo	LD50 > 5,000 mg/kg
Sílice amorfa sintética (Libre de cristales)	Inhalación-	Rata	LC50 > 0.691 mg/l
	Polvo/Niebl		
	a (4 horas)		
Sílice amorfa sintética (Libre de cristales)	Ingestión:	Rata	LD50 > 5,110 mg/kg
Polietilenglicol	Dérmico	Conejo	LD50 > 20,000 mg/kg
Polietilenglicol	Ingestión:	Rata	LD50 32,770 mg/kg
OXIDO DE ALUMINIO	Dérmico		LD50 estimado para ser > 5,000 mg/kg
OXIDO DE ALUMINIO	Inhalación-	Rata	LC50 > 2.3 mg/l
	Polvo/Niebl		
	a (4 horas)		
OXIDO DE ALUMINIO	Ingestión:	Rata	LD50 > 5,000 mg/kg

ETA = estimación de toxicidad aguda

Irritación o corrosión cutáneas

Nombre	Especies	Valor
Ácido Fosfórico	Conejo	Corrosivo
Sílice amorfa sintética (Libre de cristales)	Conejo	Sin irritación significativa
Polietilenglicol	Conejo	Mínima irritación
OXIDO DE ALUMINIO	Conejo	Sin irritación significativa

Irritación/daño grave en los ojos

Nombre	Especies	Valor
Ácido Fosfórico	clasificac ión oficial	Corrosivo
Sílice amorfa sintética (Libre de cristales)	Conejo	Sin irritación significativa
Polietilenglicol	Conejo	Irritante leve
OXIDO DE ALUMINIO	Conejo	Sin irritación significativa

Sensibilización:

Sensibilización cutánea

Nombre	Especies	Valor
Ácido Fosfórico	Humano	No clasificado
Sílice amorfa sintética (Libre de cristales)	Humanos	No clasificado
	у	
	animales	
Polietilenglicol	Conejillo	No clasificado
	de indias	

Sensibilización respiratoria

Para el componente o componentes, actualmente no hay información disponible o la información no es suficiente para la clasificación.

Mutagenicidad de células germinales

Mutagenicidad de ceidias gerininales								
Nombre	Vía de	Valor						
	administ							
	ración							
Ácido Fosfórico	In vitro	No es mutágeno						
Sílice amorfa sintética (Libre de cristales)	In vitro	No es mutágeno						
Polietilenglicol	In vitro	No es mutágeno						

Página: 7 de 13

Polietilenglicol	In vivo	No es mutágeno
OXIDO DE ALUMINIO	In vitro	No es mutágeno

Carcinogenicidad

Nombre	Vía de administr ación	Especies	Valor
Sílice amorfa sintética (Libre de cristales)	No especifica do	Ratón	Existen algunos datos positivos, pero no son suficientes para la clasificación
Polietilenglicol	Ingestión:	Rata	No es carcinógeno
OXIDO DE ALUMINIO	Inhalación	Rata	No es carcinógeno

Toxicidad en la reproducción

Efectos sobre la reproducción v/o sobre el desarrollo

Nombre	Vía de administ ración	Valor	Especies	Resultados de la prueba	Duración de la exposición
Ácido Fosfórico	Ingestión:	No clasificado para reproducción femenina	Rata	NOAEL 750 mg/kg/día	2 generación
Ácido Fosfórico	Ingestión:	No clasificado para reproducción masculina	Rata	NOAEL 750 mg/kg/día	2 generación
Ácido Fosfórico	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 750 mg/kg/día	2 generación
Sílice amorfa sintética (Libre de cristales)	Ingestión:	No clasificado para reproducción femenina	Rata	NOAEL 509 mg/kg/día	1 generación
Sílice amorfa sintética (Libre de cristales)	Ingestión:	No clasificado para reproducción masculina	Rata	NOAEL 497 mg/kg/día	1 generación
Sílice amorfa sintética (Libre de cristales)	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 1,350 mg/kg/día	durante la organogénesis
Polietilenglicol	Ingestión:	No clasificado para reproducción femenina	Rata	NOAEL 1,125 mg/kg/día	durante la gestación
Polietilenglicol	Ingestión:	No clasificado para reproducción masculina	Rata	NOAEL 5699 +/- 1341 mg/kg/día	5 días
Polietilenglicol	No especifica do	No clasificado para reproducción y / o desarrollo		NOEL N/D	
Polietilenglicol	Ingestión:	No clasificado para desarrollo	Ratón	NOAEL 562 mg/animal/dí a	durante la gestación

Órganos específicos

Toxicidad en órgano específico - exposición única

Nombre	Vía de administ ración	Órganos específicos	Valor	Especies	Resultados de la prueba	Duración de la exposición
Ácido Fosfórico	Inhalació n	irritación respiratoria	Existen algunos datos positivos, pero no son suficientes para la clasificación	Humano	NOAEL No disponible	exposición ocupacional
Polietilenglicol	Inhalació n	irritación respiratoria	No clasificado	Rata	NOAEL 1.008 mg/l	2 semanas

Toxicidad en órgano específico - exposición repetida

Nombre	Vía de administr ación	Órganos específicos	Valor	Especies	Resultados de la prueba	Duración de la exposición
Sílice amorfa sintética (Libre de cristales)	Inhalación	aparato respiratorio silicosis	No clasificado	Humano	NOAEL No disponible	exposición ocupacional
Polietilenglicol	Inhalación	aparato respiratorio	No clasificado	Rata	NOAEL	2 semanas

Página: 8 de 13

					1.008 mg/l	
Polietilenglicol	Ingestión:	riñón o vejiga corazón sistema endocrino sistema hematopoyético hígado sistema nervioso	No clasificado	Rata	NOAEL 5,640 mg/kg/day	13 semanas
OXIDO DE ALUMINIO	Inhalación	neumoconiosis	Existen algunos datos positivos, pero no son suficientes para la clasificación	Humano	NOAEL No disponible	exposición ocupacional
OXIDO DE ALUMINIO	Inhalación	fibrosis pulmonar	No clasificado	Humano	NOAEL No disponible	exposición ocupacional

Peligro de aspiración

Para el componente o componentes, actualmente no hay información disponible o la información no es suficiente para la clasificación.

Por favor póngase en contacto en la dirección o el teléfono que aparecen en la primera página de la HDS para obtener información toxicológica adicional sobre este material y/o sus componentes.

SECCIÓN 12: Información ecotoxicológica

La siguiente información puede no ser consistente con la clasificación del material en la Sección 2 si las clasificaciones del ingrediente específico son obligatorias por parte de una autoridad competente. La información adicional que conlleve a la clasificación del material en la Sección 2 está disponible por solicitud; además, los datos del destino ambiental y efectos de los ingredientes pueden no reflejarse en esta sección porque un ingrediente puede estar presente por debajo del límite para etiquetarlo, no se espera que el ingrediente esté disponible en la exposición o no se considera que los datos sean relevantes en la totalidad del material.

12.1. Toxicidad

Peligro acuático agudo:

De conformidad con los criterios de GHS no es tóxico agudo para la vida acuática.

Peligro acuático crónico:

De conformidad con los criterios de GHS no es tóxico crónico para la vida acuática.

Sin datos disponibles de la prueba del producto

Material	N° CAS	Organismo	Tipo	Exposición	Criterio de valoración de la prueba	Resultados de la prueba
Ácido Fosfórico	7664-38-2	Algas verdes	Experimental	72 horas	EC50	> 100 mg/l
Ácido Fosfórico	7664-38-2	Pulga de agua	Experimental	48 horas	EC50	> 100 mg/l
Ácido Fosfórico	7664-38-2	Algas verdes	Experimental	72 horas	NOEC	100 mg/l
Sílice amorfa sintética (Libre de cristales)	112945-52-5	Algas verdes	Compuesto análogo	72 horas	CEr50	> 173.1 mg/l
Sílice amorfa sintética (Libre de cristales)	112945-52-5	Organismo sedimentario	Compuesto análogo	96 horas	EC50	8,500 mg/kg (peso seco)
Sílice amorfa sintética (Libre de cristales)	112945-52-5	Pulga de agua	Compuesto análogo	24 horas	EL50	> 10,000 mg/l
Sílice amorfa sintética (Libre de cristales)	112945-52-5	Pez cebra	Compuesto análogo	96 horas	LL50	> 10,000 mg/l
Sílice amorfa sintética (Libre de cristales)	112945-52-5	Algas verdes	Compuesto análogo	72 horas	NOEC	173.1 mg/l
Sílice amorfa	112945-52-5	Pulga de agua	Compuesto análogo	21 días	NOEC	68 mg/l

sintética (Libre de cristales)						
Sílice amorfa sintética (Libre de cristales)	112945-52-5	Barro activado	Experimental	3 horas	EC50	> 1,000 mg/l
Polietilenglicol	25322-68-3	Barro activado	Experimental	N/D	EC50	> 1,000 mg/l
Polietilenglicol	25322-68-3	Salmón del Atlántico	Experimental	96 horas	LC50	> 1,000 mg/l
OXIDO DE ALUMINIO	1344-28-1	Pez	Experimental	96 horas	LC50	> 100 mg/l
OXIDO DE ALUMINIO	1344-28-1	Algas verdes	Experimental	72 horas	EC50	> 100 mg/l
OXIDO DE ALUMINIO	1344-28-1	Pulga de agua	Experimental	48 horas	LC50	> 100 mg/l
OXIDO DE ALUMINIO	1344-28-1	Algas verdes	Experimental	72 horas	NOEC	> 100 mg/l

12.2. Persistencia y degradabilidad

Material	Nº CAS	Tipo de prueba	Duración	Tipo de estudio	Resultados de la prueba	Protocolo
Ácido Fosfórico	7664-38-2	Datos no disponibles- insuficientes	N/D	N/D	N/D	N/D
Sílice amorfa sintética (Libre de cristales)	112945-52-5	Datos no disponibles- insuficientes	N/D	N/D	N/D	N/D
Polietilenglicol	25322-68-3	Experimental Biodegradación	28 días	Demanda biológica de oxígeno	53 %BOD/ThOD	OCDE 301C - MITI (I)
OXIDO DE ALUMINIO	1344-28-1	Datos no disponibles- insuficientes	N/D	N/D	N/D	N/D

12.3. Potencial bioacumulativo

Material	Nº CAS	Tipo de prueba	Duración	Tipo de estudio	Resultados de la prueba	Protocolo
Ácido Fosfórico	7664-38-2	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Sílice amorfa sintética (Libre de cristales)	112945-52-5	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Polietilenglicol	25322-68-3	Estimado Bioconcentración		Factor de bioacumulación	2.3	
OXIDO DE ALUMINIO	1344-28-1	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D

12.4. Movilidad en el suelo

Para obtener mayores informes, contacte al fabricante

12.5 Otros efectos adversos

Sin información disponible

SECCIÓN 13: Información sobre la eliminación de los productos

Página: 10 de 13

13.1. Métodos de eliminación/desecho

Deseche el contenido/recipiente de conformidad con las reglamentaciones locales, regionales, nacionales, internacionales.

Deseche el producto de desperdicio en una instalación autorizada para desperdicio industrial.

SECCIÓN 14: Información de transporte

Transporte Maritimo (IMDG)

Prohibido: Política de División 3M

Transporte aéreo (IATA)

Número UN:UN 1805

Nombre de envío apropiado: Solución de ácido fosfórico

Nombre técnico: Ninguno asignado.

Clase/División de peligro:8

Riesgo secundario: Ninguno asignado.

Grupo de empaque:III

Cantidad limitada: Ninguno asignado. Contaminante marino: Ninguno asignado.

Nombre técnico del contaminante marino: Ninguno asignado.

Otras descripciones de materiales peligrosos:

Mercancías peligrosas en cantidades exceptuadas: 8

TRANSPORTE TERRESTRE

Prohibido:No relevante

Número UN:No relevante

Nombre de envío apropiado: No relevante

Nombre técnico: No relevante

Clase/División de peligro: No relevante

Riesgo secundario: No relevante Grupo de empaque: No relevante Cantidad limitada: No relevante Contaminante marino: No relevante

Nombre técnico del contaminante marino: No relevante Otras descripciones de materiales peligrosos: No relevante

Las clasificaciones para el transporte se proporcionan como un servicio al cliente. Para envíos, USTED es responsable de cumplir con todas las leyes y regulaciones correspondientes, que incluyen la clasificación apropiada de transporte y empaquetado. Las clasificaciones para el transporte se basan en la fórmula del producto, empaque, políticas de 3M y conocimiento por parte de 3M de las regulaciones vigentes apropiadas. 3M no garantiza la precisión de la presente información de clasificación. Esta información sólo aplica para la clasificación de transporte y no aplica para los requisitos de empaquetado, etiquetado o comercialización. La información anterior sólo es para referencia. Si realiza envíos por aire o mar, USTED está advertido de revisar y cumplir con los requisitos regulatorios correspondientes.

SECCIÓN 15: Información reglamentaria

15.1. Regulaciones/legislación de seguridad, salud y ambiental específicas para la sustancia o mezcla

Estatus de inventario global

Para obtener más información, contacte a 3M. Los componentes de este producto cumplen con los nuevos requerimientos de notificación de sustancias de "CEPA".

Normas chilenas aplicables

NCh2245, NCh382, NCh1411/4, NCh2190, D.S. nº 594, D.S. nº 43, D.S. nº 148, D.S. nº 298, Ley nº 19.496

ng-t--- 11 i. 10

El destinatario debe comprobar la posible existencia de normativas locales aplicables al producto químico.

SECCIÓN 16: Otra información

16.1. Información adicional de seguridad

Clasificación de peligro NFPA

Inflamabilidad: 1 Inestabilidad: 0 Salud: 3 Peligros especiales: Ninguno

Corrosivo; Sí

Las clasificaciones de peligro de la Asociación Nacional de Protección contra Incendios (NFPA) están diseñadas para que las use el personal de respuesta en emergencias para atender los peligros que se presentan a corto plazo, exposición aguda a un material en condiciones de incendio, salpicadura o emergencias similares. Las clasificaciones de peligro se basan principalmente en las propiedades físicas y tóxicas inherentes del material, aunque también incluyen las propiedades tóxicas de los productos de combustión o descomposición que se sabe se generan en cantidades significativas.

16.2. Cambios de revisión

Número del grupo de documento: 29-8286-6 Número de versión: Fecha de publicación: 19/12/2022 Fecha de reemplazo: 14/03/2022

16.3. Clave de abreviaturas y acrónimos

ACGIH: Conferencia Estadounidense de Higienistas Industriales Gubernamentales (ACGIH)

AIHA: Asociación Estadounidense de Higiene Industrial

ATE: Estimación de la toxicidad aguda

C.A.S. No.: Número del Chemical Abstracts Service

CEIL: Límite superior

CEPA: Agencia Canadiense de Protección del Medio Ambiente

CITUC: Centro de Información Toxicológica de la Universidad Católica CMRG: Directrices recomendadas por los fabricantes de productos químicos

D.S. No.: Decreto Supremo Número

GHS: Sistema Globalmente Armonizado de Clasificación y Etiquetado de Productos Químicos, 5ª edición revisada 2013

HMIS : Sistema de Identificación de Materiales Peligrosos IATA: Asociación Internacional de Transporte Aéreo

IMDG: Código Marítimo Internacional de Mercancías Peligrosas

LC50: Concentración letal media LD50: Mediana de la dosis letal LEL: Límite inferior de explosividad LPA: Límite Absoluto Permisible LPP: Límite de peso admisible LPT: Límite temporal admisible MSDS: Hoja de Seguridad

N/D: No aplicable N/D : Sin datos NCh: Norma chilena

NFPA: Asociación Nacional de Protección contra Incendios

NOAEL: Nivel de efecto adverso no observado

PPE: Equipo de protección personal

STEL (límite de exposición a corto plazo): Límite de exposición a corto plazo

TSCA: Ley de Control de Sustancias Tóxicas TWA: Media ponderada en el tiempo

UEL: Límite superior de explosividad

Número de la ONU: Número de las Naciones Unidas

VOC: Compuestos orgánicos volátiles

LIMITACIÓN DE RESPONSABILIDADES: La información provista en esta Hoja de Datos de Seguridad (HDS por sus siglas en español) representa el mejor saber y entender de 3M a la fecha de su publicación, por lo que 3M no será responsable de los posibles daños, perjuicios o pérdidas, derivados de su uso, excepto cuando la ley lo establezca. Los usos no descritos aquí o la combinación con otros materiales no fueron considerados en la preparación de este documento. Por esta razón, es responsabilidad del usuario de esta información que realice su propia evaluación para asegurarse la adecuación del

producto para un propósito en particular. Esta HDS tiene el objetivo de transmitir información sobre salud y seguridad. El importador autorizado es responsable de cumplir los requisitos regulatorios, incluidos pero no limitados a registro/ notificaciones del producto, rastreo del volumen de sustancias y posibles registros/notificaciones de sustancias controladas.

Página: 13 de 13