Kit de Parches Flexibles AutomixTM EZ, 05888

Hoja de Datos de Seguridad

Derechos Reservados, 2019, 3M Company.

Todos los derechos reservados. Copiar o descargar la presente información con el objetivo de utilizar los productos de 3M en forma apropiada está permitido con la condición de que: (1) la información se copie en su totalidad y sin cambios, salvo previo acuerdo por escrito otorgado por 3M, y (2) ni la copia ni el original vuelvan a venderse o distribuyan de alguna otra forma con el propósito de obtener ganancias con ello.

Grupo del documento: 20-7855-8 **Número de versión:** 4.00 **Fecha de publicación:** 15/05/2019 **Fecha de reemplazo:** 22/08/2016

Identificación del producto químico y de la empresa

1.1. Identificación del producto químico

Kit de Parches Flexibles AutomixTM EZ, 05888

Números de identificación del producto

60-4550-2936-7	60-5100-2944-4	FS-9100-4254-8	FS-9100-4263-9	FS-9100-4265-4
FS-9100-4266-2	FS-9100-4448-6	FS-9100-4450-2	FS-9100-5020-2	FS-9100-5021-0
FS-9100-5022-8	FS-9100-5023-6	FS-9100-5024-4	GT-6000-1864-9	HB-0044-2211-7

1.2. Uso recomendado y restricciones de uso

Uso recomendado

Automotriz, El producto contiene un kit compuesto por seis parches de 4"x 8" y seis sobre con promotor de adhesión 3M 06396.

1.3. Detalles del proveedor

Empresa: 3M Chile S.A.

Domicilio: Santa Isabel 1001, Providencia, Santiago, Chile

Teléfono: 56 2 24103000

Correo electrónico: atencionconsumidor@mmm.com

Sitio web: www.3mchile.cl

1.4. Número telefónico de emergencia

CITUC 56 2 26353800

Este producto es un kit o un producto en numerosas partes que consiste de varios componentes empaquetados en forma independiente. Se incluye una HDS para cada uno de dichos componentes. No separe las HDS del componente de la presente portada. Los números de documento de las HDS para los componentes del producto son:

34-4427-0

LIMITACIÓN DE RESPONSABILIDADES: La información en la presente Hoja de Datos de Seguridad se basa en nuestra experiencia y es correcta hasta donde sabemos a la fecha de la publicación, pero no aceptamos responsabilidad alguna por cualquier pérdida, daño o lesión que resulte de su uso (excepto como lo requiere la ley). La información puede no ser válida para algún uso al que no se hace referencia en la presente Hoja de Datos de Seguridad o uso del producto en combinación con otros materiales. Por dichas razones, es importante que los consumidores realicen sus propias pruebas para que queden satisfechos con la conveniencia del producto para sus propias aplicaciones pretendidas.

Hoja de Datos de Seguridad

Derechos Reservados, 2019, 3M Company.

Todos los derechos reservados. Copiar o descargar la presente información con el objetivo de utilizar los productos de 3M en forma apropiada está permitido con la condición de que: (1) la información se copie en su totalidad y sin cambios, salvo previo acuerdo por escrito otorgado por 3M, y (2) ni la copia ni el original vuelvan a venderse o distribuyan de alguna otra forma con el propósito de obtener ganancias con ello.

Grupo del documento: 34-4427-0 **Número de versión:** 3.00 **Fecha de publicación:** 15/05/2019 **Fecha de reemplazo:** 22/08/2016

SECCIÓN 1: Identificación del producto químico y de la empresa

1.1. Identificación del producto químico

Promotor de Adhesión 3MTM, PN 06396

Números de identificación del producto

LA-T100-2632-3 44-0043-8879-7 70-0706-9843-9 FS-9100-4256-3 FS-9100-4269-6

FS-9100-4270-4 FS-9100-4271-2

1.2. Uso recomendado y restricciones de uso

Uso recomendado

Automotriz, Promotor de adhesión absorbido en una esponja para ser usado con cintas adhesivas

1.3. Detalles del proveedor

Empresa: 3M Chile S.A.

Domicilio: Santa Isabel 1001, Providencia, Santiago, Chile

Teléfono: 56 2 24103000

Correo electrónico: atencionconsumidor@mmm.com

Sitio web: www.3mchile.cl

1.4. Número telefónico de emergencia

CITUC 56 2 26353800

SECCIÓN 2: Identificación de los peligros

2.1. Clasificación de la sustancia o mezcla

Líquido inflamable: Categoría 2.

Toxicidad aguda (dérmica): Categoría 5.

Toxicidad aguda (inhalación): Categoría 5.

Irritación/daño grave ocular: Categoría 2A.

Corrosión/irritación cutánea: Categoría 3.

Sensibilizante cutáneo: Categoría 1.

Toxicidad en la reproducción: Categoría 1B.

Carcinogenicidad: Categoría 2.

Toxicidad en órgano específico (exposición única): Categoría 1.

Toxicidad específica en determinados órganos (exposición única): Categoría 3.

Toxicidad en órgano específico (exposición repetida): Categoría 1.

2.2. Elementos en la etiqueta

Palabra de la señal

Peligro

Símbolos

Flama |Signo de exclamación / Peligro para la salud |Medio ambiente |

Pictogramas

DECLARACIONES DE PELIGRO:

H225 Líquido y vapor sumamente inflamables. Puede ser nocivo al estar en contacto con la piel. H313 Puede ser nocivo en caso de inhalación. H333 Causa irritación ocular grave. H319 Causa irritación cutánea leve. H316 H317 Puede causar una reacción alérgica cutánea. H336 Puede causar somnolencia o mareo. H360 Puede dañar la fertilidad o al feto en gestación. H351 Sospecha de causar cáncer. H370 Nocivo para los órganos: órganos sensoriales |

H372 Nocivo para los órganos por exposición prolongada o repetida:

sistema nervioso |

H373 Puede ser nocivo para los órganos por exposición prolongada o repetida:

órganos sensoriales |

H400 Muy tóxico para la vida acuática.

DECLARACIONES DE PRECAUCIÓN

General:

P102 Mantenga alejado del alcance de los niños.

Prevención:

P201 Obtenga las instrucciones especiales antes de usarlo.

P210A Manténgase alejado del calor, fuentes de calor, chispas, flama abierta y otras fuentes

de ignición. No fumar.

P260 No respire el polvo, humo, gas, neblina, vapores, aerosol. P271 Sólo use en exteriores o en un área bien ventilada.

P280E Use guantes de protección.
P273 Evite liberarlo al medio ambiente.

Respuesta:

P305 + P351 + P338 EN CASO DE CONTACTO CON LOS OJOS: enjuague con cuidado con agua

durante varios minutos; si está usando, y es fácil de hacer, quitese los lentes de

contacto; siga enjuagando.

P333 + P313 Si se presenta irritación cutánea o sarpullido: consiga atención médica.

P308 + P313 Si se expuso o tiene dudas: consiga atención médica.

P312 Si siente malestar, llame al CENTRO DE INFORMACIÓN TOXICOLÓGICA

CITUC o al médico.

P370 + P378G En caso de incendio: para sofocarlo use un agente apropiado para líquidos

inflamables, como sustancias químicas secas o bióxido de carbono.

Almacenamiento:

P405 Almacene hacia arriba.

Desecho:

P501 Deseche el contenido/recipiente de conformidad con las regulaciones locales,

regionales, nacionales, internacionales correspondientes.

2.3. Otros peligros

Ninguno conocido.

SECCIÓN 3: Composición/información de los componentes

Este material es una mezcla.

Ingrediente	C.A.S. No.	% por peso
Ciclohexano	110-82-7	No relevante 30 - 60
Xileno	1330-20-7	No relevante 30 - 60
Etilbenceno	100-41-4	No relevante < 11
Alcohol etílico	64-17-5	No relevante 5 - 10
Caucho Clorado	68609-36-9	No relevante 1 - 5
Etilacetato	141-78-6	No relevante 1 - 5
Polímero de Acrílato (NJTSRN 04499600-5984P)	Secreto Comercial	1 - 5
Polímero 4,4'-Isopropilidendifenol-	25068-38-6	No relevante 0.1 - 1
epiclorhidrina		
Alcohol metílico	67-56-1	No relevante < 0.5
Tolueno	108-88-3	No relevante < 0.3

SECCIÓN 4: Primeros auxilios

4.1. Descripción de las medidas en caso de primeros auxilios

Inhalación:

Lleve a la persona al aire libre. Si siente malestar, consiga atención médica.

Contacto con la piel:

Lave de inmediato con agua y jabón. Retire la ropa contaminada y lávela antes de volver a usarla. Si aparecen signos o síntomas, consiga atención médica.

Contacto con los ojos:

Enjuague de inmediato con abundante agua durante 15 minutos, por lo menos. Si está usando, y es fácil de hacer, quitese los lentes de contacto y siga enjuagando. Consiga atención médica de inmediato.

En caso de deglución:

Enjuague la boca. Si siente malestar, consiga atención médica.

4.2. Síntomas y efectos más importantes, tanto agudos como retardados

Remítase a la Sección 11.1. Información acerca de efectos toxicológicos.

4.3. Indicaciones para cualquier atención médica inmediata y tratamiento especial requerido

No relevante

SECCIÓN 5: Medidas para lucha contra incendios

5.1. Medios extintores apropiados

En caso de incendio: para sofocarlo use un agente apropiado para líquidos inflamables, como extintores de polvo químico seco o dióxido de carbono.

5.2. Peligros especiales que resulten de la sustancia o mezcla

Puede aumentar la presión en los recipientes cerrados y expuestos al calor de un incendio y hacerlos explotar.

Descomposición peligrosa o subproducto

Sustancia
Monóxido de carbono
Dióxido de carbono
Cloruro de hidrógeno

Condición

Durante la combustión
Durante la combustión
Durante la combustión

5.3. Acciones de protección especial para los bomberos

Es posible que el agua no sea efectiva para extinguir el incendio, aunque debe usarse para mantener frescas las superficies y recipientes expuestos al incendio y evitar las rupturas explosivas. Use ropa protectora completa, incluyendo casco, aparatos respiratorios autónomos, de presión positiva o negativa, abrigo y pantalones "bunker", bandas alrededor de los brazos, cintura y piernas, máscara facial y cubierta protectora para las áreas expuestas de la cabeza.

SECCIÓN 6: Medidas que se deben tomar en caso de derrame accidental

6.1. Precauciones que debe adoptar el personal, equipo de protección y procedimientos de emergencia

Evacue el área. Mantenga alejado del calor, chispas, flama abierta y fuentes de calor. - No fumar. Sólo use herramientas que no generen chispa. Ventile el área con aire fresco. En derrames grandes, o derrames en espacios confinados, ventile en forma mecánica para dispersar o extraer los vapores de conformidad con las buenas prácticas de higiene industrial. ¡ADVERTENCIA! Un motor puede ser una fuente de ignición que ocasione la explosión o quema de gases o vapores inflamables en el área del derrame. Para obtener información relacionada con los peligros físicos y de salud, protección respiratoria, ventilación y equipo de protección personal, remítase a las otras secciones de la presente HDS.

6.2. Precauciones ambientales

Evite liberarlo al medio ambiente.

6.3. Métodos y material para contención y limpieza

Contenga el derrame. Cubra el área del derrame con espuma extintora de incendios. Se recomienda usar una espuma de forme película acuosa (AFFF) apropiada. Trabaje desde los bordes hacia el centro del derrame, cubra con bentonita, vermiculita u otro material inorgánico absorbente disponible en el mercado, como los Kits Absorbentes 3M. Mezcle suficiente absorbente hasta que aparente estar seco. Recuerde, al agregar material absorbente no se elimina el peligro físico, a la salud o ambiental. Recolecte todo el material derramado que sea posible con herramientas que no generen chispas. Coloque en un recipiente metálico aprobado para transporte por las autoridades correspondientes. Limpie los residuos.

Selle el recipiente. Deseche el material recolectado tan pronto sea posible.

SECCIÓN 7: Manipulación y almacenamiento

7.1. Precauciones para el manejo segura

Mantenga alejado del alcance de los niños. No lo manipule hasta que haya leído y comprendido todas las precauciones de seguridad. Mantenga alejado del calor, chispas, flama abierta y fuentes de calor. - No fumar. Sólo use herramientas que no generen chispa. Adopte las medidas de precaución contra descarga estática. No respire el polvo, humo, gas, neblina, vapores y aerosol. No lo ponga en contacto con los ojos, piel o ropa. No coma, beba o fume cuando use este producto. Lave vigorosamente después de manipularlo. No debe permitirse usar ropa de trabajo contaminada fuera del lugar de trabajo. Evite liberarlo al medio ambiente. Lave la ropa contaminada antes de volver a usarla. Evite el contacto con agentes oxidantes (como cloro, ácido crómico, etc.) Use zapatos aterrizados en forma apropiada o de baja estática. Use equipo de protección personal (guantes, respiradores, etc.) como se requiere hacerlo. Para minimizar el riesgo de ignición, determine las clasificaciones eléctricas correspondientes en el proceso de uso del producto y seleccione el equipo específico de ventilación de escape local para evitar la acumulación de vapor inflamable. Utilice contenedores aterrizados/interconectados y equipo de recepción si existe el potencial de acumulación de electricidad estática durante la transferencia.

7.2. Condiciones para almacenamiento seguro, incluyen cualquier incompatibilidad

Almacene en un lugar bien ventilado. Mantenga frío. Mantenga el recipiente bien cerrado. Almacene alejado del calor. Almacene alejado de ácidos. Almacene alejado de agentes oxidantes.

SECCIÓN 8: Controles de exposición/protección personal

8.1. Parámetros de control

Límites de exposición ocupacional

Si un componente se divulga en la sección 3, aunque no aparezca en la siguiente tabla, el límite de exposición ocupacional no está disponible para dicho componente.

Ingrediente	C.A.S. No.	Agencia	Tipo de límite	Comentarios adicionales
Etilbenceno	100-41-4	ACGIH	TWA: 20 ppm	A3: Carcinógeno animal confirmado
Etilbenceno	100-41-4	D.S. No. 594	LPP (8 horas): 380 mg/m3 (87 ppm); LPT (15 minutos): 543 mg/m3 (125 ppm)	A3: Carcinógeno animal confirmado
Tolueno	108-88-3	ACGIH	TWA: 20 ppm	A4: Sin clasificación como carcinógeno humano
Tolueno	108-88-3	D.S. No. 594	LPP (8 horas): 328 mg/m3 (87 ppm); LPT(15 minutos): 560 mg/m3 (150 ppm)	PIEL, A4: sustancia en estudio, no se dispone aún de información válida que permita clasificarla como cancerígena para el ser humano
Ciclohexano	110-82-7	ACGIH	TWA: 100 ppm	
Ciclohexano	110-82-7	D.S. No. 594	LPP (8 horas): 884 mg/m3 (263 ppm)	
Xileno	1330-20-7	ACGIH	TWA: 100 ppm; STEL: 150 ppm	A4: Sin clasificación como carcinógeno humano
Xileno	1330-20-7	D.S. No. 594	LPP (8 horas): 380 mg/m3 (87 ppm); LPT (15 minutos): 651	A4: Sin clasificación como carcinógeno

			mg/m3 (150 ppm)	humano
Etilacetato	141-78-6	ACGIH	TWA: 400 ppm	
Etilacetato	141-78-6	D.S. No. 594	LPP (8 horas): 1260 mg/m3 (350 ppm)	
Alcohol etílico	64-17-5	ACGIH	STEL: 1000 ppm	A3: Carcinógeno animal confirmado
Alcohol etílico	64-17-5	D.S. No. 594	LPP (8 horas): 1645 mg/m3 (875 ppm)	A4: Sin clasificación como carcinógeno humano
Alcohol metílico	67-56-1	ACGIH	TWA: 200 ppm; STEL: 250 ppm	Piel
Alcohol metílico	67-56-1	D.S. No. 594	LPP (8 horas): 229 mg/m3 (175 ppm); LPT (15 minutos): 328 mg/m3 (250 ppm)	Piel

ACGIH: Conferencia Estadounidense de Higienistas Industriales Gubernamentales (ACGIH)

AIHA: Asociación Estadounidense de Higiene Industrial

CMRG: Lineamientos recomendados por el fabricante de los productos químicos

D.S. No. 594: Decreto Supremo No. 594 TWA: Promedio ponderado en tiempo STEL: Límite de exposición a corto plazo

CEIL: Límite superior

LPP: Límite Permisible Ponderado (D.S. No 594) LPT: Límite Permisible Temporal (D.S. No 594) LPA: Límite Permisible Absoluto (D.S. No 594)

8.2. Controles de exposición

8.2.1. Controles técnicos

Use ventilación general por dilución o ventilación de escape local para controlar las exposiciones aéreas correspondientes por debajo de los límites de exposición y controle el polvo, humo, gas, neblina, vapores y aerosol. Si la ventilación no es adecuada, use equipo de protección respiratoria. Use equipo de ventilación a prueba de explosión.

8.2.2. Equipo de protección personal (EPP)

Protección de ojos/cara

Con base en los resultados de una evaluación de exposición, seleccione y use protección en ojos/cara para evitar el contacto. Se recomienda el uso de las siguientes protecciones de ojos/cara:

Antiparras con ventilación indirecta

Protección cutánea/mano

Con base en los resultados de una evaluación de exposición, seleccione y use guantes o ropa de protección aprobada por las normas locales correspondientes para evitar el contacto con la piel. La selección debe basarse tanto en los factores de uso como en los niveles de exposición, concentración de la sustancia o mezcla, frecuencia y duración, cambios físicos, como temperaturas extremas, y otras condiciones de uso. Consulte al fabricante de guantes o ropa de protección para seleccionar los guantes/ropa compatibles apropiados. NOTA: Los guantes de nitrilo pueden usarse sobre guantes de polímero laminado para mejorar la destreza.

Se recomiendan guantes elaborados con los siguientes materiales: Polímero laminado

Si el producto se usa de tal forma que represente un mayor riesgo de exposición (como rocío, mayor potencial de salpicadura, etc.), puede ser necesario el uso de overoles de protección. Con base en los resultados de una evaluación de exposición, seleccione y use protección corporal para evitar el contacto. Se recomienda el uso de los siguientes materiales de ropa de protección: Delantal -polímero laminado

Protección respiratoria

Puede necesitar una evaluación de exposición para decidir si requiere un respirador. Si es necesario un respirador, use respiradores como parte del programa completo de protección respiratoria. Con base en los resultados de la evaluación de

exposición, seleccione de los siguientes tipos de respiradores para reducir la exposición por inhalación:

Respirador purificador de aire con pieza facial de medio rostro o rostro completo apropiado para vapores orgánicos y partículas

Los cartuchos contra vapores orgánicos pueden tener una corta vida útil.

Para asuntos relacionados con la conveniencia para una aplicación específica, consulte al fabricante del respirador.

SECCIÓN 9: Propiedades físicas y químicas

9.1. Información con base en las propiedades físicas y químicas

Estado físico Líquido

Forma física específica: Esponja que contenga 2 ml de líquido, aproximadamente.

Aspecto/Olor Líquido amarillo, olor a solvente, absorbido dentro de la esponja.

Las propiedades físicas sólo reflejan al líquido.

Límite de olor Sin datos disponibles

pH 4,4 - 5 [*Método de prueba*:Sometido a prueba según el

protocolo ASTM] [Detalles:@23°C]

Punto de fusión/punto de congelamiento No relevante

Punto de ebullición/Punto de ebullición inicial/Rango 73,1 °C [Método de prueba: Sometido a prueba según el protocolo

de ebulliciónASTM] [Detalles:@760mmHg] **Punto de destello**1,1 °C [Método de prueba:SETAFLASH]

Velocidad de evaporación 6,4 [*Método de prueba*:Estimado] [*Norma de referencia*:Xileno

=1

Inflamabilidad (sólido, gas) No relevante

Límite inferior de inflamabilidad (LEL)

1 % [Método de prueba: Estimado]
Límite superior de inflamabilidad (UEL)

6 % [Método de prueba: Estimado]

Presión del vapor 11.092,4 Pa [a 20 °C] [*Método de prueba*: Sometido a prueba

según el protocolo ASTM]

Densidad del vapor 1,7 [Método de prueba: Estimado] [Norma de referencia: Aire =

1]

Densidad 0,82 g/ml

Densidad relativa 0,82 [Norma de referencia: AGUA = 1]

Solubilidad del agua 10 %

Insoluble en aguaSin datos disponiblesCoeficiente de partición: n-octanol/aguaSin datos disponibles

Temperatura de autoignición 430 °C

Temperatura de descomposiciónSin datos disponibles

Viscosidad <= 25 mPa-s Peso molecular No relevante

Compuestos orgánicos volátiles <=781 g/l [Método de prueba:calculado por la regla 443.1 de

SCAQMD] [Detalles: Calculado]

por ciento volátil Aproximadamente 95 %

VOC menos H2O y solventes exentos <=781 g/l [Método de prueba:calculado por la regla 443.1 de

SCAQMD] [Detalles: Calculado]

SECCIÓN 10: Estabilidad y reactividad

10.1. Reactividad

Este material puede reaccionar con ciertos agentes en determinadas condiciones; remítase a los encabezados restantes en esta sección.

10.2. Estabilidad química

Estable.

10.3. Posibilidad de reacciones peligrosas

Puede presentar polimerización peligrosa.

10.4. Condiciones que deben evitarse

Calor

Chispas o flamas

10.5. Materiales incompatibles

Ácidos fuertes

Agentes oxidantes fuertes

10.6. Productos de descomposición peligrosa

Sustancia

Condición

Ninguno conocido.

Remítase a la sección 5.2 para obtener información acerca de los productos peligrosos de descomposición durante la combustión.

SECCIÓN 11: Información toxicológica

La siguiente información puede no ser consistente con la clasificación del material en la Sección 2 si las clasificaciones del ingrediente específico son obligatorias por parte de una autoridad competente; además, los datos toxicológicos de los ingredientes pueden no reflejarse en la clasificación del material o en los signos y síntomas de la exposición porque un ingrediente puede estar presente por debajo del límite para etiquetarlo, un ingrediente puede no estar disponible en la exposición o los datos pueden no ser relevantes en la totalidad del material.

11.1. Información acerca de efectos toxicológicos

Signos y síntomas de la exposición

Con base en los datos de la prueba o en la información de los componentes, este material puede producir los siguientes efectos en la salud:

Inhalación:

Puede ser nocivo en caso de inhalación. Irritación en las vías respiratorias: los signos y síntomas pueden incluir tos, estornudos, escurrimiento nasal, cefalea, ronquera y dolor de nariz y garganta. Puede ocasionar efectos adicionales a la salud (Consulte más adelante).

Contacto con la piel:

Puede ser nocivo al estar en contacto con la piel. Irritación cutánea leve: los signos y síntomas pueden incluir enrojecimiento localizado, inflamación, sarpullido y resequedad. Reacción alérgica cutánea (no foto-inducida): Los signos y síntomas pueden incluir enrojecimiento, inflamación, vesículas y prurito. Puede ocasionar efectos adicionales a la salud (Consulte más adelante).

Contacto con los ojos:

Irritación ocular grave: los signos y síntomas pueden incluir enrojecimiento significativo, inflamación, lagrimeo, córnea con aspecto nublado y limitaciones en la visión.

Ingestión:

Irritación gastrointestinal: los signos y síntomas pueden incluir dolor abdominal, malestar estomacal, náusea, vómito y diarrea. Puede ocasionar efectos adicionales a la salud (Consulte más adelante).

Efectos adicionales a la salud:

Una sola exposición puede ocasionar efectos en órganos específicos:

Efectos auditivos: los signos y síntomas pueden incluir limitaciones auditivas, desequilibrio y zumbido de oídos. Depresión del sistema nervioso central (SNC): los signos y síntomas pueden incluir cefalea, mareo, somnolencia, falta de coordinación,

náusea, tiempo de reacción reducido, habla mal articulada, vértigo e inconsciencia.

La exposición prolongada o repetida puede ocasionar efectos en órganos específicos:

Efectos auditivos: los signos y síntomas pueden incluir limitaciones auditivas, desequilibrio y zumbido de oídos. Efectos neurológicos: los signos y síntomas pueden incluir cambios en la personalidad, falta de coordinación, pérdida sensorial, cosquilleo o entumecimiento de las extremidades, debilidad, temblor y cambios en la presión sanguínea y en la frecuencia cardiaca.

Efectos en la reproducción o desarrollo:

Contiene uno o varios productos químicos que pueden causar defectos de nacimiento y ser nocivo en la reproducción.

Carcinogenicidad:

Contiene uno o varios productos químicos que pueden causar cáncer.

Información adicional:

Este producto contiene etanol. Las bebidas alcohólicas y el etanol en bebidas alcohólicas están clasificadas por la Agencia Internacional de Investigación del Cáncer como carcinógenas para los humanos. También existen datos que asocian el consumo humano de bebidas alcohólicas con toxicidad en el desarrollo y toxicidad hepática. No se espera que la exposición al metanol durante el uso previsto del producto cause cáncer, toxicidad en el desarrollo o toxicidad hepática.

Datos toxicológicos

Si un componente se divulga en la sección 3, aunque no aparezca en la siguiente tabla, los datos para dicho criterio de valoración no están disponibles o los datos no son suficientes para clasificarlo.

Toxicidad aguda

Nombre	Vía de administración	Especies	Valor
Producto en general	Dérmico		Sin datos disponibles; ATE calculado2.000 - 5.000 mg/kg
Producto en general	Inhalación - vapor(4 hr)		Sin datos disponibles; ATE calculado20 - 50 mg/l
Producto en general	Ingestión:		Sin datos disponibles; ATE calculado5.000 mg/kg
Ciclohexano	Dérmico	Rata	LD50 > 2.000 mg/kg
Ciclohexano	Inhalación - vapor (4 horas)	Rata	LC50 > 32,9 mg/l
Ciclohexano	Ingestión:	Rata	LD50 6.200 mg/kg
Xileno	Dérmico	Conejo	LD50 > 4.200 mg/kg
Xileno	Inhalación - vapor (4 horas)	Rata	LC50 29 mg/l
Xileno	Ingestión:	Rata	LD50 3.523 mg/kg
Etilbenceno	Dérmico	Conejo	LD50 15.433 mg/kg
Etilbenceno	Inhalación - vapor (4 horas)	Rata	LC50 17,4 mg/l
Etilbenceno	Ingestión:	Rata	LD50 4.769 mg/kg
Alcohol etílico	Dérmico	Conejo	LD50 > 15.800 mg/kg
Alcohol etílico	Inhalación - vapor (4 horas)	Rata	LC50 124,7 mg/l
Alcohol etílico	Ingestión:	Rata	LD50 17.800 mg/kg
Etilacetato	Dérmico	Conejo	LD50 > 18.000 mg/kg
Etilacetato	Inhalación - vapor (4 horas)	Rata	LC50 70,5 mg/l
Etilacetato	Ingestión:	Rata	LD50 5.620 mg/kg
Caucho Clorado	Dérmico	Conejillo de indias	LD50 > 1.000 mg/kg
Caucho Clorado	Ingestión:	Rata	LD50 > 3.200 mg/kg
Alcohol metílico	Dérmico		LD50 estimado para ser 1.000 - 2.000 mg/kg
Alcohol metílico	Inhalación - vapor		LC50 estimado para ser 10 - 20 mg/l
Alcohol metílico	Ingestión:		LD50 estimado para ser 50 - 300 mg/kg
Polímero 4,4'-Isopropilidendifenol- epiclorhidrina	Dérmico	Rata	LD50 > 1.600 mg/kg
Polímero 4,4'-Isopropilidendifenol- epiclorhidrina	Ingestión:	Rata	LD50 > 1.000 mg/kg
Tolueno	Dérmico	Rata	LD50 12.000 mg/kg
Tolueno	Inhalación - vapor (4 horas)	Rata	LC50 30 mg/l
Tolueno	Ingestión:	Rata	LD50 5.550 mg/kg

ETA = estimación de toxicidad aguda

Corrosión/irritación en la piel

Corrosion/n ritacion en la pier			
Nombre	Especies	Valor	
	•		
Ciclohexano	Conejo	Irritante leve	
Xileno	Conejo	Irritante leve	
Etilbenceno	Conejo	Irritante leve	
Alcohol etílico	Conejo	Sin irritación significativa	
Etilacetato	Conejo	Mínima irritación	
Caucho Clorado	Conejillo	Sin irritación significativa	
	de indias	-	
Alcohol metílico	Conejo	Irritante leve	
Polímero 4,4'-Isopropilidendifenol-epiclorhidrina	Conejo	Irritante leve	
Tolueno	Conejo	Irritante	

Irritación/daño grave en los ojos

Nombre	Especies	Valor
Ciclohexano	Conejo	Irritante leve
Xileno	Conejo	Irritante leve
Etilbenceno	Conejo	Irritante moderado
Alcohol etílico	Conejo	Irritante severo
Etilacetato	Conejo	Irritante leve
Caucho Clorado	Juicio profesional	Irritante leve
Alcohol metílico	Conejo	Irritante moderado
Polímero 4,4'-Isopropilidendifenol-epiclorhidrina	Conejo	Irritante moderado
Tolueno	Conejo	Irritante moderado

Sensibilización cutánea

Nombre	Especies	Valor
Etilbenceno	Humano	No clasificado
Alcohol etílico	Humano	No clasificado
Etilacetato	Conejillo de	No clasificado
	indias	
Alcohol metílico	Conejillo de	No clasificado
	indias	
Polímero 4,4'-Isopropilidendifenol-epiclorhidrina	Humano y animal	Sensibilizante
Tolueno	Conejillo de	No clasificado
	indias	

Sensibilización respiratoria

Nombre	Especies	Valor
Polímero 4,4'-Isopropilidendifenol-epiclorhidrina	Humano	No clasificado

Mutagenicidad de células germinales

Nombre	Vía de administración	Valor
Ciclohexano	In vitro	No es mutágeno
Ciclohexano	In vivo	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Xileno	In vitro	No es mutágeno
Xileno	In vivo	No es mutágeno
Etilbenceno	In vivo	No es mutágeno
Etilbenceno	In vitro	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Alcohol etílico	In vitro	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Alcohol etílico	In vivo	Existen algunos datos positivos, aunque los datos

		no son suficientes para la clasificación
Etilacetato	In vitro	No es mutágeno
Etilacetato	In vivo	No es mutágeno
Alcohol metílico	In vitro	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Alcohol metílico	In vivo	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Polímero 4,4'-Isopropilidendifenol-epiclorhidrina	In vivo	No es mutágeno
Polímero 4,4'-Isopropilidendifenol-epiclorhidrina	In vitro	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Tolueno	In vitro	No es mutágeno
Tolueno	In vivo	No es mutágeno

Carcinogenicidad

Nombre	Vía de administración	Especies	Valor
Xileno	Dérmico	Rata	No es carcinógeno
Xileno	Ingestión:	Numerosas especies animales	No es carcinógeno
Xileno	Inhalación:	Humano	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Etilbenceno	Inhalación:	Numerosas especies animales	Carcinógeno
Alcohol etílico	Ingestión:	Numerosas especies animales	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Alcohol metílico	Inhalación:	Numerosas especies animales	No es carcinógeno
Polímero 4,4'-Isopropilidendifenol-epiclorhidrina	Dérmico	Ratón	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Tolueno	Dérmico	Ratón	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Tolueno	Ingestión:	Rata	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación
Tolueno	Inhalación:	Ratón	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación

Toxicidad en la reproducción

Efectos en la reproducción o desarrollo

Nombre	Vía de administración	Valor	Especies	Resultados de la prueba	Duración de la exposición
Ciclohexano	Inhalación:	No clasificado para reproducción femenina.	Rata	NOAEL 24 mg/l	2 generación
Ciclohexano	Inhalación:	No clasificado para reprodución	Rata	NOAEL 24 mg/l	2 generación
Ciclohexano	Inhalación:	No clasificado para desarrollo	Rata	NOAEL 6,9 mg/l	2 generación
Xileno	Inhalación:	No clasificado para reproducción femenina.	Humano	NOAEL No disponible	exposición ocupacional
Xileno	Ingestión:	No clasificado para desarrollo	Ratón	NOAEL No disponible	durante la organogénesis
Xileno	Inhalación:	No clasificado para desarrollo	Numerosas especies animales	NOAEL No disponible	durante la gestación
Etilbenceno	Inhalación:	No clasificado para desarrollo	Rata	NOAEL 4,3 mg/l	previo al apareamiento y durante la gestación
Alcohol etílico	Inhalación:	No clasificado para desarrollo	Rata	NOAEL 38 mg/l	durante la gestación
Alcohol etílico	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 5.200 mg/kg/day	previo al apareamiento y durante la

					gestación
Alcohol metílico	Ingestión:	No clasificado para reprodución	Rata	NOAEL 1.600 mg/kg/day	21 días
Alcohol metílico	Ingestión:	Tóxico para el desarrollo	Ratón	LOAEL 4.000 mg/kg/day	durante la organogénesis
Alcohol metílico	Inhalación:	Tóxico para el desarrollo	Ratón	NOAEL 1,3 mg/l	durante la organogénesis
Polímero 4,4'-Isopropilidendifenol- epiclorhidrina	Ingestión:	No clasificado para reproducción femenina.	Rata	NOAEL 750 mg/kg/day	2 generación
Polímero 4,4'-Isopropilidendifenol- epiclorhidrina	Ingestión:	No clasificado para reprodución	Rata	NOAEL 750 mg/kg/day	2 generación
Polímero 4,4'-Isopropilidendifenol- epiclorhidrina	Dérmico	No clasificado para desarrollo	Conejo	NOAEL 300 mg/kg/day	durante la organogénesis
Polímero 4,4'-Isopropilidendifenol- epiclorhidrina	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 750 mg/kg/day	2 generación
Tolueno	Inhalación:	No clasificado para reproducción femenina.	Humano	NOAEL No disponible	exposición ocupacional
Tolueno	Inhalación:	No clasificado para reprodución	Rata	NOAEL 2,3 mg/l	1 generación
Tolueno	Ingestión:	Tóxico para el desarrollo	Rata	LOAEL 520 mg/kg/day	durante la gestación
Tolueno	Inhalación:	Tóxico para el desarrollo	Humano	NOAEL No disponible	envenenamien to o abuso

Lactancia

Nombre	Vía de	Especies	Valor
	administración		
Xileno	Ingestión:	Ratón	No clasificado para efectos en la lactancia.

Órganos específicos

Toxicidad en órgano específico - exposición única

Nombre	Vía de administración	Órganos específicos	Valor	Especies	Resultados de la prueba	Duración de la exposición
Ciclohexano	elohexano Inhalación: depresión del sistema nervioso central Puede causar somnolencia o mareo		Humano y animal	NOAEL No disponible		
respiratoria positivos, no son su		Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Humano y animal	NOAEL No disponible		
Ciclohexano	Ingestión:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Juicio profesional	NOAEL No disponible	
Xileno	Inhalación:	sistema de auditoría	Causa daño a los órganos	Rata	LOAEL 6,3 mg/l	8 horas
Xileno	Inhalación:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Humano	NOAEL No disponible	
Xileno	Inhalación:	irritación respiratoria	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Humano	NOAEL No disponible	
Xileno	Inhalación:	ojos	No clasificado	Rata	NOAEL 3,5 mg/l	no disponible
Xileno	Inhalación:	hígado	No clasificado	Numerosas especies animales	NOAEL No disponible	
Xileno	Ingestión:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Numerosas especies animales	NOAEL No disponible	
Xileno	Ingestión:	ojos	No clasificado	Rata	NOAEL 250	no relevante

					mg/kg	
Etilbenceno	Inhalación:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Humano	NOAEL No disponible	
Etilbenceno	Inhalación:	irritación respiratoria	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Humano y animal	NOAEL No disponible	
Etilbenceno	Ingestión:	depresión del sistema nervioso central			NOAEL No disponible	
Alcohol etílico	Inhalación:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Humano	LOAEL 2,6 mg/l	30 minutos
Alcohol etílico	Inhalación:	irritación respiratoria	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Humano	LOAEL 9,4 mg/l	no disponible
Alcohol etílico	Ingestión:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Numerosas especies animales	NOAEL no disponible	
Alcohol etílico	Ingestión:	riñón o vejiga	No clasificado	Perro	NOAEL 3.000 mg/kg	
Etilacetato	Inhalación:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Humano	NOAEL No disponible	
Etilacetato	Inhalación:	irritación respiratoria	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Humano	NOAEL No disponible	
Etilacetato	Ingestión:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Humano	NOAEL No disponible	
Alcohol metílico	Inhalación:	ceguera	Causa daño a los órganos	Humano	NOAEL No disponible	exposición ocupacional
Alcohol metílico	Inhalación:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Humano	NOAEL No disponible	no disponible
Alcohol metílico	Inhalación:	irritación respiratoria	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Rata	NOAEL No disponible	6 horas
Alcohol metílico	Ingestión:	ceguera	Causa daño a los órganos	Humano	NOAEL No disponible	envenenamien to o abuso
Alcohol metílico	Ingestión:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Humano	NOAEL No disponible	envenenamien to o abuso
Tolueno	Inhalación:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Humano	NOAEL No disponible	
Tolueno	Inhalación:	irritación respiratoria	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Humano	NOAEL No disponible	
Tolueno	Inhalación:	sistema inmunológico	No clasificado	Ratón	NOAEL 0,004 mg/l	3 horas
Tolueno	Ingestión:	depresión del sistema nervioso central	Puede causar somnolencia o mareo	Humano	NOAEL No disponible	envenenamien to o abuso

Toxicidad en órgano específico - exposición repetida

Nombre	Vía de administración	Órganos específicos	Valor	Especies	Resultados de la prueba	Duración de la exposición
		_				
Ciclohexano	Inhalación:	hígado	No clasificado	Rata	NOAEL 24	90 días
					mg/l	
Ciclohexano	Inhalación:	sistema de auditoría	No clasificado	Rata	NOAEL 1,7	90 días
					mg/l	

Ciclohexano	clohexano Inhalación: riñón o vejiga No clasificado		Conejo	NOAEL 2,7 mg/l	10 semanas	
Ciclohexano	Inhalación:	sistema hematopoyético	No clasificado	Ratón	NOAEL 24 mg/l	14 semanas
Ciclohexano	Inhalación:	sistema nervioso periférico	No clasificado	Rata	NOAEL 8,6 mg/l	30 semanas
Xileno	Inhalación:	sistema nervioso	sistema nervioso Causa daño a los órganos por exposición prolongada y repetida		LOAEL 0,4 mg/l	4 semanas
Xileno	Inhalación:	sistema de auditoría			LOAEL 7,8 mg/l	5 días
Xileno	Inhalación:	hígado	No clasificado	Numerosas especies animales	NOAEL No disponible	
Xileno	Inhalación:	alación: corazón aparato No clasificado No endócrino tracto es		Numerosas especies animales	NOAEL 3,5 mg/l	13 semanas
Xileno	Ingestión:	respiratorio sistema de auditoría	No clasificado	Rata	NOAEL 900 mg/kg/day	2 semanas
Xileno	Ingestión:	riñón o vejiga	No clasificado	Rata	NOAEL 1.500 mg/kg/day	90 días
Xileno	Ingestión: hígado		No clasificado	Numerosas especies animales	NOAEL No disponible	
Xileno	Ingestión:	corazón piel aparato endócrino Hueso, dientes, uñas o cabello sistema hematopoyético sistema inmunológico sistema nervioso aparato respiratorio	No clasificado	Ratón	NOAEL 1.000 mg/kg/day	103 semanas
Etilbenceno	Inhalación:	riñón o vejiga	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Rata	NOAEL 1,1 mg/l	2 años
Etilbenceno	Inhalación:	hígado	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Ratón	NOAEL 1,1 mg/l	103 semanas
Etilbenceno	Inhalación:	sistema hematopoyético	No clasificado	Rata	NOAEL 3,4 mg/l	28 días
Etilbenceno	Inhalación:	sistema de auditoría	No clasificado	Rata	NOAEL 2,4 mg/l	5 días
Etilbenceno	Inhalación:	aparato endócrino	No clasificado	Ratón	NOAEL 3,3 mg/l	103 semanas
Etilbenceno	Inhalación:	tracto gastrointestinal	No clasificado	Rata	NOAEL 3,3 mg/l	2 años
Etilbenceno	Inhalación:	Hueso, dientes, uñas o cabello músculos	No clasificado	Numerosas especies animales	NOAEL 4,2 mg/l	90 días
Etilbenceno	Inhalación:	corazón sistema inmunológico aparato respiratorio	No clasificado	Numerosas especies animales	NOAEL 3,3 mg/l	2 años
Etilbenceno	Ingestión:	hígado riñón o vejiga	No clasificado	Rata	NOAEL 680 mg/kg/day	6 meses
Alcohol etílico	Inhalación:	hígado	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Conejo	LOAEL 124 mg/l	365 días

Alaahal atíliaa	Inhologións	aistama	No clasificado	Data	NOAEL 25	14 días
he		sistema hematopoyético sistema inmunológico	INO CIASHICADO	Rata	NOAEL 25 mg/l	14 dias
Alcohol etílico	po ne cl		Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Rata	LOAEL 8.000 mg/kg/day	4 meses
Alcohol etílico	Ingestión: riñón o vejiga		No clasificado	Perro	NOAEL 3.000 mg/kg/day	7 días
Etilacetato	Inhalación:	aparato endócrino hígado sistema nervioso	No clasificado	Rata	NOAEL 0,043 mg/l	90 días
Etilacetato	Inhalación:	sistema hematopoyético	No clasificado	Conejo	LOAEL 16 mg/l	40 días
Etilacetato	Ingestión:	sistema hematopoyético hígado riñón o vejiga	No clasificado	Rata	NOAEL 3.600 mg/kg/day	90 días
Alcohol metílico	Inhalación:	hígado	No clasificado	Rata	NOAEL 6,55 mg/l	4 semanas
Alcohol metílico	Inhalación:	aparato respiratorio	No clasificado	Rata	NOAEL 13,1 mg/l	6 semanas
Alcohol metílico	Alcohol metílico Ingestión: hígado sistema nervioso		No clasificado	Rata	NOAEL 2.500 mg/kg/day	90 días
Polímero 4,4'- Isopropilidendifenol -epiclorhidrina	Dérmico	co hígado No clasificado		Rata	NOAEL 1.000 mg/kg/day	2 años
Polímero 4,4'- Isopropilidendifenol -epiclorhidrina	Dérmico	sistema nervioso	rvioso No clasificado		NOAEL 1.000 mg/kg/day	13 semanas
Polímero 4,4'- Isopropilidendifenol -epiclorhidrina	Ingestión:	sistema de auditoría corazón aparato endócrino sistema hematopoyético hígado ojos riñón o vejiga	No clasificado	Rata	NOAEL 1.000 mg/kg/day	28 días
Tolueno	Inhalación:	sistema de auditoría sistema nervioso ojos sistema olfativo	Causa daño a los órganos por exposición prolongada y repetida	Humano	NOAEL No disponible	envenenamie nto o abuso
Tolueno	Inhalación:	aparato respiratorio	Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Rata	LOAEL 2,3 mg/l	15 meses
Tolueno	Inhalación:	corazón hígado riñón o vejiga	No clasificado	Rata	NOAEL 11,3 mg/l	15 semanas
Tolueno	Inhalación:	aparato endócrino	No clasificado	Rata	NOAEL 1,1 mg/l	4 semanas
Tolueno	Inhalación:	sistema inmunológico	No clasificado	Ratón	NOAEL No disponible	20 días
Tolueno	Inhalación:	Hueso, dientes, uñas o cabello	No clasificado	Ratón	NOAEL 1,1 mg/l	8 semanas
Tolueno	Inhalación:	sistema hematopoyético sistema vascular	No clasificado	Humano	NOAEL No disponible	exposición ocupacional
Tolueno	Inhalación:	tracto gastrointestinal	No clasificado	Numerosas especies animales	NOAEL 11,3 mg/l	15 semanas
Tolueno	Ingestión: sistema nervioso		Existen algunos datos positivos, aunque los datos no son suficientes para la clasificación	Rata	NOAEL 625 mg/kg/day	13 semanas
Tolueno	Ingestión:	corazón	No clasificado	Rata	NOAEL 2.500 mg/kg/day	13 semanas

Tolueno	Ingestión:	hígado riñón o	No clasificado	Numerosas	NOAEL	13 semanas
		vejiga		especies	2.500	
				animales	mg/kg/day	
Tolueno	Ingestión:	sistema	No clasificado	Ratón	NOAEL 600	14 días
		hematopoyético			mg/kg/day	
Tolueno	Ingestión:	aparato endócrino	No clasificado	Ratón	NOAEL 105	28 días
					mg/kg/day	
Tolueno	Ingestión:	sistema	No clasificado	Ratón	NOAEL 105	4 semanas
		inmunológico			mg/kg/day	

Peligro de aspiración

Nombre	Valor
Ciclohexano	Peligro de aspiración
Xileno	Peligro de aspiración
Etilbenceno	Peligro de aspiración
Tolueno	Peligro de aspiración

Para obtener información toxicológica adicional del material o sus componentes, contacte el domicilio y teléfono enlistados en la primera página de la HDS.

SECCIÓN 12: Información ecológica

La siguiente información puede no ser consistente con la clasificación del material en la Sección 2 si las clasificaciones del ingrediente específico son obligatorias por parte de una autoridad competente. La información adicional que conlleve a la clasificación del material en la Sección 2 está disponible por solicitud; además, los datos del destino ambiental y efectos de los ingredientes pueden no reflejarse en esta sección porque un ingrediente puede estar presente por debajo del límite para etiquetarlo, no se espera que el ingrediente esté disponible en la exposición o no se considera que los datos sean relevantes en la totalidad del material.

12.1. Toxicidad

Peligro acuático agudo:

GHS Agudo 1: Muy tóxico para la vida acuática.

Peligro acuático crónico:

De conformidad con los criterios de GHS no es tóxico crónico para la vida acuática.

Sin datos disponibles de la prueba del producto

Material	CAS No.	Organismo	Tipo	Exposición	Criterio de valoración de la prueba	Resultados de la prueba
Ciclohexano	110-82-7	Carpa de cabeza grande	Experimental	96 horas	50% de concentración letal	4,53 mg/l
Ciclohexano	110-82-7	Pulga de agua	Experimental	48 horas	Efecto al 50% de concentración	0,9 mg/l
Xileno	1330-20-7	Algas verdes	Estimado	73 horas	Efecto al 50% de concentración	4,36 mg/l
Xileno	1330-20-7	Trucha arcoíris	Estimado	96 horas	50% de concentración letal	2,6 mg/l
Xileno	1330-20-7	Pulga de agua	Estimado	48 horas	Efecto al 50% de concentración	3,82 mg/l

Xileno	1330-20-7	Algas verdes	Estimado	73 horas	Efecto Conc. 10% - Tasa de	1,9 mg/l
					crecimiento	
Xileno	1330-20-7	Pulga de agua	Estimado	7 días	No se observan	0.96 mg/l
					efectos de la	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					concentración	
Xileno	1330-20-7	Trucha arcoíris	Experimental	56 días	No se observan	> 1,3 mg/l
			1		efectos de la	
					concentración	
Etilbenceno	100-41-4	Pejerrey del	Experimental	96 horas	50% de	5,1 mg/l
		Atlántico			concentración	
					letal	
Etilbenceno	100-41-4	Algas verdes	Experimental	96 horas	Efecto al 50%	3,6 mg/l
					de	
					concentración	
Etilbenceno	100-41-4	Camarón	Experimental	96 horas	50% de	2,6 mg/l
		mísido			concentración	
					letal	
Etilbenceno	100-41-4	Trucha arcoíris	Experimental	96 horas	50% de	4,2 mg/l
					concentración	
					letal	
Etilbenceno	100-41-4	Pulga de agua	Experimental	48 horas	Efecto al 50%	1,8 mg/l
					de	
					concentración	
Etilbenceno	100-41-4	Pulga de agua	Experimental	7 días	No se observan	0,96 mg/l
					efectos de la	
					concentración	
Alcohol etílico	64-17-5	Trucha arcoíris	Experimental	96 horas	50% de	42 mg/l
					concentración	
					letal	
Alcohol etílico	64-17-5	Pulga de agua	Experimental	48 horas	50% de	5.012 mg/l
					concentración	
		4			letal	
Alcohol etílico	64-17-5	Otras algas	Experimental	96 horas	No se observan	1.580 mg/l
					efectos de la	
A1 1 1 (71)	64.17.5	D 1 1	D 1	10.1/	concentración	0.6 /1
Alcohol etílico	64-17-5	Pulga de agua	Experimental	10 días	No se observan	9,6 mg/l
					efectos de la	
Dalímana da	Camata		I an datan ma		concentración	
Polímero de Acrílato	Secreto Comercial		Los datos no están			
(NJTSRN	Comerciai		disponibles o			
04499600-			son			
5984P)			insuficientes			
39041)			para la			
			clasificación			
Caucho	68609-36-9	1	Los datos no			
Clorado			están			
			disponibles o			
			son			
			insuficientes			
			para la			
			clasificación			
Etilacetato	141-78-6	Crustáceos	Experimental	48 horas	Efecto al 50%	165 mg/l

	I				concentración	
Etilacetato	141-78-6	Pez	Experimental	96 horas	50% de	212,5 mg/l
			1		concentración	
					letal	
Etilacetato	141-78-6	Algas verdes	Experimental	72 horas	No se observan	> 100 mg/l
			1		efectos de la	
					concentración	
Etilacetato	141-78-6	Pulga de agua	Experimental	21 días	No se observan	2,4 mg/l
			1		efectos de la	
					concentración	
Polímero 4,4'-	25068-38-6	Pulga de agua	Estimado	48 horas	50% de	0,95 mg/l
Isopropilidendi					concentración	
fenol-					letal	
epiclorhidrina						
Polímero 4,4'-	25068-38-6	Algas verdes	Experimental	72 horas	Efecto al 50%	> 11 mg/l
Isopropilidendi			1		de	
fenol-					concentración	
epiclorhidrina						
Polímero 4,4'-	25068-38-6	Trucha arcoíris	Experimental	96 horas	50% de	1,2 mg/l
Isopropilidendi			F		concentración	, 8
fenol-					letal	
epiclorhidrina						
Polímero 4,4'-	25068-38-6	Algas verdes	Experimental	72 horas	No se observan	4.2 mg/l
Isopropilidendi		1 8.12			efectos de la	1,2 11.8 1
fenol-					concentración	
epiclorhidrina						
Polímero 4,4'-	25068-38-6	Pulga de agua	Experimental	21 días	No se observan	0,3 mg/l
Isopropilidendi		1 4154 40 4544	Z.i.p • i i i i i i i i i i i i i i i i i i		efectos de la	0,5 1118/1
fenol-					concentración	
epiclorhidrina						
Alcohol	67-56-1	Algas u otras	Experimental	96 horas	Efecto al 50%	16,9 mg/l
metílico		plantas	F		de	3,2 8
		acuáticas			concentración	
Alcohol	67-56-1	Mojarra	Experimental	96 horas	50% de	15.400 mg/l
metílico		3,	F		concentración	
					letal	
Alcohol	67-56-1	Algas verdes	Experimental	96 horas	Efecto al 50%	22.000 mg/l
metílico		8	F		de	
					concentración	
Alcohol	67-56-1	Pulga de agua	Experimental	24 horas	Efecto al 50%	20.803 mg/l
metílico					de	
					concentración	
Alcohol	67-56-1	Algas u otras	Experimental	96 horas	No se observan	9,96 mg/l
metílico		plantas	-F		efectos de la	
		acuáticas			concentración	
Alcohol	67-56-1	Pulga de agua	Experimental	21 días	No se observan	122 mg/l
metílico					efectos de la	
					concentración	
Tolueno	108-88-3	Salmón	Experimental	96 horas	50% de	5,5 mg/l
		plateado			concentración	- ,
		F			letal	
Tolueno	108-88-3	Otros peces	Experimental	96 horas	50% de	6,41 mg/l
		C 11 05 P 00 05		10140	concentración	-,
					letal	
Tolueno	108-88-3	Algas verdes	Experimental	72 horas		12.5 mg/l
Tolueno	108-88-3	Algas verdes	Experimental	72 horas	Efecto al 50%	12,5 mg/l

					de	
					concentración	
Tolueno	108-88-3	Pulga de agua	Experimental		Efecto al 50% de concentración	3,78 mg/l
Tolueno	108-88-3	salmón coho	Experimental	40 días	No se observan efectos de la concentración	1,39 mg/l
Tolueno	108-88-3	Pulga de agua	Experimental		No se observan efectos de la concentración	0,74 mg/l

12.2. Persistencia y degradabilidad

Material	CAS No.	Tipo de prueba	Duración	Tipo de estudio	Resultados de la prueba	Protocolo
Ciclohexano	110-82-7	Experimental Fotólisis		Vida media fotolítica (en aire)	4.14 días (t 1/2)	Otros métodos
Ciclohexano	110-82-7	Experimental Biodegradación	28 días	Demanda de oxígeno biológico	77 % BOD/ThBOD	OCDE 301F - Respirometría manomérica
Xileno	1330-20-7	Experimental Biodegradación	28 días	Demanda de oxígeno biológico	90-98 % BOD/ThBOD	OCDE 301F - Respirometría manomérica
Etilbenceno	100-41-4	Experimental Fotólisis		Vida media fotolítica (en aire)	4.26 días (t 1/2)	Otros métodos
Etilbenceno	100-41-4	Experimental Biodegradación	28 días	Evolución de bióxido de carbono	70-80 % del peso	Otros métodos
Alcohol etílico	64-17-5	Experimental Biodegradación	14 días	Demanda de oxígeno biológico	89 % BOD/ThBOD	OCDE 301C - MITI (I)
Polímero de Acrílato (NJTSRN 04499600- 5984P)	Secreto Comercial	Datos no disponibles- insuficientes			N/A	
Caucho Clorado	68609-36-9	Datos no disponibles- insuficientes			n/a	
Etilacetato	141-78-6	Experimental Fotólisis		Vida media fotolítica (en aire)	20.0 días (t 1/2)	Otros métodos
Etilacetato	141-78-6	Experimental Biodegradación	14 días	Demanda de oxígeno biológico	94 % BOD/ThBOD	OCDE 301C - MITI (I)
Polímero 4,4'- Isopropilidendi fenol- epiclorhidrina	25068-38-6	Estimado Hidrólisis		Vida media hidrolítica	<2 días (t 1/2)	Otros métodos
Polímero 4,4'- Isopropilidendi fenol-	25068-38-6	Experimental Biodegradación	28 días	Demanda de oxígeno biológico	0 % BOD/ThBOD	OCDE 301C - MITI (I)

epiclorhidrina						
Alcohol metílico	67-56-1	Experimental Biodegradación	14 días		92 % BOD/ThBOD	OCDE 301C - MITI (I)
Tolueno	108-88-3	Experimental Fotólisis		Vida media fotolítica (en aire)	5.2 días (t 1/2)	Otros métodos
Tolueno	108-88-3	Experimental Biodegradación	20 días	Demanda de oxígeno biológico	80 % del peso	

12.3. Potencial bioacumulativo

Material	CAS No.	Tipo de prueba	Duración	Tipo de estudio	Resultados de la prueba	Protocolo
Ciclohexano	110-82-7	Experimental BCF - Carpa	56 días	Factor de bioacumulació n	129	OCDE 305E - Bioacumulación de flujo en peces
Xileno	1330-20-7	Experimental BCF -Trucha arcoíris	56 días	Factor de bioacumulació n	25.9	Otros métodos
Etilbenceno	100-41-4	Experimental BCF - Otro	42 días	Factor de bioacumulació n	1	Otros métodos
Alcohol etílico	64-17-5	Experimental Bioconcentraci ón		Logaritmo del coeficiente de partición octanol/H2O	-0.35	Otros métodos
Polímero de Acrílato (NJTSRN 04499600- 5984P)	Secreto Comercial	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Caucho Clorado	68609-36-9	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Etilacetato	141-78-6	Experimental Bioconcentraci ón		Logaritmo del coeficiente de partición octanol/H2O	0.68	Otros métodos
Polímero 4,4'- Isopropilidendi fenol- epiclorhidrina	25068-38-6	Experimental BCF - Carpa	28 días	Factor de bioacumulació n	<=42	OCDE 305E - Bioacumulación de flujo en peces
Alcohol metílico	67-56-1	Experimental Bioconcentraci ón		Logaritmo del coeficiente de partición octanol/H2O	-0.77	Otros métodos

Tolueno	108-88-3	Experimental	Logaritmo del	2.73	Otros métodos
		Bioconcentraci	coeficiente de		
		ón	partición		
			octanol/H2O		

12.4. Movilidad en el suelo

Para obtener mayores informes, contacte al fabricante

12.5 Otros efectos adversos

Sin información disponible

SECCIÓN 13: Información sobre la disposición final

13.1. Métodos para desechar

Deseche el contenido/recipiente de conformidad con las reglamentaciones locales, regionales, nacionales, internacionales.

Incinerar en una instalación permitida de incineración de residuos. Los productos de combustión incluyen ácido halógeno (HCl/HF/HBr). Las instalaciones deben contar con la capacidad para manipular materiales halogenados. Como alternativa para desecharlo, recurra a instalaciones autorizadas para desechar desperdicios. Se considerarán, almacenarán, tratarán y eliminarán los residuos / barriles / envases vacíos utilizados para transportar y manipular sustancias químicas peligrosas (sustancias químicas / mezclas / preparaciones clasificadas como peligrosas según la reglamentación aplicable), salvo que se establezca lo contrario en las reglamentaciones sobre residuos aplicables. Consultar con las autoridades reguladoras respectivas para determinar las instalaciones de tratamiento y eliminación disponibles.

SECCIÓN 14: Información sobre el transporte

Transporte marino (IMDG)

UN Número:UN3175

Nombre de envío apropiado: Sólidos que contienen líquidos inflamables, N.E.P.

Nombre técnico: Ninguno asignado. Clase/División de peligro: 4.1

Riesgo secundario: Ninguno asignado. Grupo de empaque: Ninguno asignado. Cantidad limitada: Ninguno asignado. Contaminante marino: Ninguno asignado.

Nombre técnico del contaminante marino: Ninguno asignado.

Otras descripciones de materiales peligrosos: No restringido, según la Disposición Especial A46

Transporte aéreo (IATA)

UN Número:UN3175

Nombre de envío apropiado: Sólidos que contienen líquidos inflamables, N.E.P.

Nombre técnico: Ninguno asignado. Clase/División de peligro: 4.1

Riesgo secundario: Ninguno asignado. Grupo de empaque: Ninguno asignado. Cantidad limitada: Ninguno asignado. Contaminante marino: Ninguno asignado.

Nombre técnico del contaminante marino: Ninguno asignado.

Otras descripciones de materiales peligrosos: No restringido, según la Disposición Especial A46

TRANSPORTE TERRESTE

Prohibido:No

UN Número:UN3175

Nombre de envío apropiado: Sólidos que contienen líquidos inflamables, N.E.P.

Nombre técnico: Ninguno asignado. Clase/División de peligro: 4.1

Riesgo secundario: Ninguno asignado. Grupo de empaque: Ninguno asignado. Cantidad limitada: Ninguno asignado. Contaminante marino: Ninguno asignado.

Nombre técnico del contaminante marino: Ninguno asignado. Otras descripciones de materiales peligrosos: No Aplica

Las clasificaciones para el transporte se proporcionan como un servicio al cliente. Para envíos, USTED es responsable de cumplir con todas las leyes y regulaciones correspondientes, que incluyen la clasificación apropiada de transporte y empaquetado. Las clasificaciones para el transporte se basan en la fórmula del producto, empaque, políticas de 3M y conocimiento por parte de 3M de las regulaciones vigentes apropiadas. 3M no garantiza la precisión de la presente información de clasificación. Esta información sólo aplica para la clasificación de transporte y no aplica para los requisitos de empaquetado, etiquetado o comercialización. La información anterior sólo es para referencia. Si realiza envíos por aire o mar, USTED está advertido de revisar y cumplir con los requisitos regulatorios correspondientes.

SECCIÓN 15: Información reglamentaria

15.1. Regulaciones/legislación de seguridad, salud y ambiental específicas para la sustancia o mezcla

Estatus de inventario global

Para obtener más información, contacte a 3M. Los componentes del material cumplen con las disposiciones de Notificación Nacional de Sustancias Químicas Industriales y Esquema de Valoración (NICNAS) de Australia. Pueden aplicar ciertas restricciones. Para obtener mayor información, contacte a la división de ventas. Los componentes del producto cumplen con los requisitos de notificación de sustancias químicas de TSCA. Este producto cumple con las medidas sobre la gestión medioambiental de nuevas sustancias químicas. Todos los ingredientes están listados o están exentos en el inventario China IECSC

Normas chilenas aplicables

NCh2245, NCh382, NCh1411/4, NCh2190, D.S. No. 594, D.S. No. 43, D.S. No. 148, D.S. No. 298, Ley No. 19.496

El receptor debería verificar la posible existencia de regulaciones locales aplicables al producto químico.

SECCIÓN 16: Otras informaciones

Clasificación de peligro NFPA

Salud: 2 Inflamabilidad: 3 Inestabilidad: 0 Peligros especiales: Ninguno

Las clasificaciones de peligro de la Asociación Nacional de Protección contra Incendios (NFPA) están diseñadas para que las use el personal de respuesta en emergencias para atender los peligros que se presentan a corto plazo, exposición aguda a un material en condiciones de incendio, salpicadura o emergencias similares. Las clasificaciones de peligro se basan principalmente en las propiedades físicas y tóxicas inherentes del material, aunque también incluyen las propiedades tóxicas de los productos de combustión o descomposición que se sabe se generan en cantidades significativas.

LIMITACIÓN DE RESPONSABILIDADES: La información en la presente Hoja de Datos de Seguridad se basa en nuestra experiencia y es correcta hasta donde sabemos a la fecha de la publicación, pero no aceptamos responsabilidad alguna por cualquier pérdida, daño o lesión que resulte de su uso (excepto como lo requiere la ley). La información puede no ser válida para algún uso al que no se hace referencia en la presente Hoja de Datos de Seguridad o uso del producto en combinación con otros materiales. Por dichas razones, es importante que los consumidores realicen sus propias pruebas para que queden

romotor de Adhesión 3M™, PN 06396	
Tomotor de l'addesion out , 111 00070	
atisfechos con la conveniencia del producto para sus propias aplicaciones pretendidas.	
The state of the s	

Página: 23 de 23