

Safety Data Sheet

Copyright,2022, 3M Company.All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document group:	33-8427-8	Version number:	3.00
Issue Date:	28/11/2022	Supersedes date:	03/08/2021

This Safety Data Sheet has been prepared in accordance with the Preparation of Safety Data Sheets for Hazardous Chemicals Code of Practice (Safe Work Australia, December 2011)

SECTION 1: Identification

1.1. Product identifier

3M[™] Piezo Inkjet Ink 8916UV Cyan

Product Identification Numbers 75-0302-6409-9

1.2. Recommended use and restrictions on use

Recommended use

Professional printing ink for use in traffic safety systems.

For Industrial or Professional use only.

1.3. Supplier's details

Address:	3M Australia - Building A, 1 Rivett Road, North Ryde NSW 2113
Telephone:	136 136
E Mail:	productinfo.au@mmm.com
Website:	www.3m.com.au

1.4. Emergency telephone number EMERGENCY: 1800 097 146 (Australia only)

SECTION 2: Hazard identification

This product is classified as a hazardous chemical according to the Model Work Health and Safety Regulations, 2011, in accordance with applicable State and Territory legislation.

Refer to Section 14 of this Safety Data Sheets for product Dangerous Goods Classification.

2.1. Classification of the substance or mixture

Skin Corrosion/Irritation: Category 2.
Serious Eye Damage/Irritation: Category 1.
Skin Sensitizer: Category 1.
Carcinogenicity: Category 2.
Reproductive Toxicity: Category 1.
Specific Target Organ Toxicity (single exposure): Category 3

2.2. Label elements

The label elements below were prepared in accordance with the Code of Practice on Preparation of Safety Data Sheets for Hazardous Chemicals (Safe Work Australia, December 2011). This information may be different from the actual product label.

Signal word

Danger

Symbols

Corrosion |Exclamation mark |Health Hazard |

Pictograms

Hazard statements

H315	Causes skin irritation.
H318	Causes serious eye damage.
H317	May cause an allergic skin reaction.
H351	Suspected of causing cancer.
H360	May damage fertility or the unborn child.
H335	May cause respiratory irritation.

Precautionary statements

Prevention:

i i e i entionit	
P201	Obtain special instructions before use.
P202	Do not handle until all safety precautions have been read and understood.
P261	Avoid breathing dust/fume/gas/mist/vapours/spray.
P264	Wash thoroughly after handling.
P271	Use only outdoors or in a well-ventilated area.
P272	Contaminated work clothing should not be allowed out of the workplace.
P280B	Wear protective gloves and eye/face protection.

Response:

P302 + P352P304 + P340P305 + P351 + P338

P310 P333 + P313 P362 + P364

Storage: P405

Store locked up.

Disposal:

P501

Dispose of contents/container in accordance with applicable local/regional/national/international regulations.

IF ON SKIN: Wash with plenty of soap and water.

lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTRE or doctor/physician.

If skin irritation or rash occurs: Get medical advice/attention.

Take off contaminated clothing and wash it before reuse.

IF INHALED: Remove person to fresh air and keep comfortable for breathing.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

2.3. Other assigned/identified product hazards

- May cause chemical gastrointestinal burns.

2.4. Other hazards which do not result in classification

May be harmful if swallowed. Very toxic to aquatic life. Toxic to aquatic life with long lasting effects.

SECTION 3: Composition/information on ingredients

This material is a mixture.

Ingredient	CAS Nbr	% by Weight
Isobornyl acrylate	5888-33-5	10 - 30
Isooctyl acrylate	29590-42-9	10 - 30
Tetrahydrofurfuryl acrylate	2399-48-6	10 - 30
1,6-Hexanediol diacrylate	13048-33-4	< 10
2-Propenoic acid, 1,6-hexanediyl ester, polymer with 2-aminoethanol	67906-98-3	< 10
2-Propenoic acid, 2-hydroxyethyl ester, polymer with 5-isocyanato-1- (isocyanatomethyl)-1,3,3- trimethylcyclohexane, 2-oxepanone and 2,2'-oxybis[ethanol]	72162-39-1	< 10
Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide	75980-60-8	1 - 5
Benzophenone	119-61-9	1-5
29H,31H-phthalocyaninato(2-)- N29,N30,N31,N32 copper	147-14-8	1 - 5
Camphene	79-92-5	< 0.2
Tris(nonylphenyl) phosphite	26523-78-4	< 0.02

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

Skin contact

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

Eye contact

Immediately flush with large amounts of water for at least 15 minutes. Remove contact lenses if easy to do. Continue rinsing. Immediately get medical attention.

If swallowed

Rinse mouth. Do not induce vomiting. Get immediate medical attention.

4.2. Most important symptoms and effects, both acute and delayed

Irritating to the respiratory tract (coughing, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain). Allergic skin reaction (redness, swelling, blistering, and itching). Serious damage to the eyes (corneal cloudiness, severe pain, tearing, ulcerations, and significantly impaired or loss of vision). Target organ effects following prolonged or repeated exposure. See Section 11 for additional details.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable.

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

Closed containers exposed to heat from fire may build pressure and explode.

Hazardous Decomposition or By-Products

<u>Substance</u>	<u>Condition</u>
Carbon monoxide.	During combustion.
Carbon dioxide.	During combustion.

5.3. Special protective actions for fire-fighters

Water may not effectively extinguish fire; however, it should be used to keep fire-exposed containers and surfaces cool and prevent explosive rupture. Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

Hazchem Code: •3Z

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment. For larger spills, cover drains and build dykes to prevent entry into sewer systems or bodies of water.

6.3. Methods and material for containment and cleaning up

Contain spill. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue with an appropriate solvent selected by a qualified and authorised person. Ventilate the area with fresh air. Read and follow safety precautions on the solvent label and Safety Data Sheet. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

For industrial/occupational use only. Not for consumer sale or use. Do not handle until all safety precautions have been read and understood. Do not breathe dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Avoid contact with oxidising agents (eg. chlorine, chromic acid etc.) Use personal protective equipment (eg. gloves, respirators...) as required.

7.2. Conditions for safe storage including any incompatibilities

Store in a well-ventilated place. Keep container tightly closed. Store away from oxidising agents.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	CAS Nbr	Agency	Limit type	Additional comments
Benzophenone	119-61-9	AIHA	TWA: 0.5 mg/m ³	
1,6-Hexanediol diacrylate	13048-33-4	AIHA	TWA:1 mg/m3(0.11 ppm)	Dermal Sensitizer
COPPER COMPOUNDS	147-14-8	ACGIH	TWA(as Cu, fume):0.2 mg/m3;TWA(as Cu dust or mist):1 mg/m3	
Tetrahydrofurfuryl acrylate	2399-48-6	Manufacturer determined	TWA:0.1 ppm(0.64 mg/m3);STEL:0.3 ppm(1.91 mg/m3)	Dermal Sensitizer
Isooctyl acrylate	29590-42-9	AIHA	TWA:37.5 mg/m3(5 ppm)	

ACGIH : American Conference of Governmental Industrial Hygienists

AIHA : American Industrial Hygiene Association

Australia OELs : Australia. Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment

CMRG : Chemical Manufacturer's Recommended Guidelines

TWA: Time-Weighted-Average

STEL: Short Term Exposure Limit

CEIL: Ceiling

Sen: Sensitiser

Sk: Absorption through the skin may be a significant source of exposure.

8.2. Exposure controls

8.2.1. Engineering controls

Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapours/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Full face shield.

Indirect vented goggles.

Select and use eye protection in accordance with AS/NZS 1336. Eye protection should comply with the performance specifications of AS/NZS 1337.

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing. Note: Nitrile gloves may be worn over polymer laminate gloves to improve dexterity. Gloves made from the following material(s) are recommended: Polymer laminate

if this product is used in a manner that presents a higher potential for exposure (eg. spraying, high splash potential etc.), then use of protective coveralls may be necessary. Select and use body protection to prevent contact based on the results of an exposure assessment. The following protective clothing material(s) are recommended: Apron - polymer laminate Select and use gloves according to AS/NZ 2161.

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapours and particulates, including oily mists

For questions about suitability for a specific application, consult with your respirator manufacturer. Select and use respirators according to AS/NZS 1715. Respirators should comply with AS/NZS 1716 performance specifications. For information about respirators, call 3M on 1800 024 464.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state	Liquid.	
Specific Physical Form:	Liquid.	
Colour	Cyan	
Odour	Acrylate	
Odour threshold	No data available.	
рН	Not applicable.	
Melting point/Freezing point	Not applicable.	
Boiling point/Initial boiling point/Boiling range	> 93.3 °C	
Flash point	> 93.3 °C [<i>Test Method</i> :Closed Cup]	
Evaporation rate	No data available.	
Flammability (solid, gas)	Not applicable.	
Flammable Limits(LEL)	No data available.	
Flammable Limits(UEL)	No data available.	
Vapour pressure	< 1,333.2 Pa [@ 20 °C]	
Vapor Density and/or Relative Vapor Density	> 1 [<i>Ref Std</i> :AIR=1]	
Density	1.04 g/ml	
Relative density	1.04 [<i>Ref Std</i> :WATER=1]	
Water solubility	Negligible	
Solubility- non-water	No data available.	
Partition coefficient: n-octanol/water	No data available.	
Autoignition temperature	No data available.	
Decomposition temperature	No data available.	
Viscosity/Kinematic Viscosity	No data available.	
Volatile organic compounds (VOC)	No data available.	
Percent volatile	No data available.	
VOC less H2O & exempt solvents	No data available.	

SECTION 10: Stability and reactivity

10.1 Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

10.2 Chemical stability

Stable.

10.3. Conditions to avoid

Light.

10.4. Possibility of hazardous reactions

Hazardous polymerisation may occur. (Upon depletion of inhibitor or exposure to heat)

10.5 Incompatible materials Strong oxidising agents.

10.6 Hazardous decomposition products <u>Substance</u> None known.

Condition

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labelling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

Respiratory tract irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain. May cause additional health effects (see below).

Skin contact

Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, dryness, cracking, blistering, and pain. Allergic skin reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching. May cause additional health effects (see below).

Eye contact

Corrosive (eye burns): Signs/symptoms may include cloudy appearance of the cornea, chemical burns, severe pain, tearing, ulcerations, significantly impaired vision or complete loss of vision.

Ingestion

May be harmful if swallowed.

Gastrointestinal corrosion: Signs/symptoms may include severe mouth, throat and abdominal pain, nausea, vomiting, and diarrhea; blood in the faeces and/or vomitus may also be seen. May cause additional health effects (see below).

Additional Health Effects:

Prolonged or repeated exposure may cause target organ effects:

Kidney/Bladder effects: Signs/symptoms may include changes in urine production, abdominal or lower back pain, increased protein in urine, increased blood urea nitrogen (BUN), blood in urine, and painful urination. Dermal effects: Signs/symptoms may include redness, itching, acne, or bumps on the skin.

Reproductive/Developmental Toxicity:

Contains a chemical or chemicals which can cause birth defects or other reproductive harm.

Carcinogenicity:

Contains a chemical or chemicals which can cause cancer.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000
-			mg/kg
Overall product	Ingestion		No data available; calculated ATE >2,000 - $=5000 \text{ mg/kg}$
Isobornyl acrylate	Dermal	Rabbit	=5,000 mg/kg LD50 > 5,000 mg/kg
Isobornyl acrylate	Ingestion	Rat	LD50 4,350 mg/kg
Isooctyl acrylate	Dermal	Rabbit	LD50 > 2,000 mg/kg
Isooctyl acrylate	Ingestion	Rat	LD50 > 5,000 mg/kg
Tetrahydrofurfuryl acrylate	Ingestion	Rat	LD50 882 mg/kg
1,6-Hexanediol diacrylate	Dermal	Rabbit	LD50 3,636 mg/kg
1,6-Hexanediol diacrylate	Ingestion	Rat	LD50 > 5,000 mg/kg
Diphenyl(2,4,6- trimethylbenzoyl)phosphine oxide	Dermal	Professional judgement	LD50 estimated to be > 5,000 mg/kg
Diphenyl(2,4,6- trimethylbenzoyl)phosphine oxide	Ingestion	Rat	LD50 > 5,000 mg/kg
Benzophenone	Dermal	Rabbit	LD50 3,535 mg/kg
Benzophenone	Ingestion	Rat	LD50 1,900 mg/kg
29H,31H-phthalocyaninato(2-)- N29,N30,N31,N32 copper	Dermal		LD50 estimated to be > 5,000 mg/kg
29H,31H-phthalocyaninato(2-)- N29,N30,N31,N32 copper	Ingestion	Rat	LD50 10,000 mg/kg
Camphene	Dermal	Rabbit	LD50 > 2,500 mg/kg
Camphene	Ingestion	Rat	LD50 > 5,000 mg/kg
Tris(nonylphenyl) phosphite	Dermal	Rabbit	LD50 > 2,000 mg/kg
Tris(nonylphenyl) phosphite	Ingestion	Rat	LD50 19,500 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Overall product	In vitro data	Irritant
Isobornyl acrylate	Rabbit	Minimal irritation
Isooctyl acrylate	In vitro data	No significant irritation
Tetrahydrofurfuryl acrylate	Rabbit	Corrosive
2-Propenoic acid, 2-hydroxyethyl ester, polymer with 5-isocyanato-1-(isocyanatomethyl)-1,3,3- trimethylcyclohexane, 2-oxepanone and 2,2'- oxybis[ethanol]	similar compounds	Irritant
2-Propenoic acid, 1,6-hexanediyl ester, polymer with 2-aminoethanol	similar compounds	Irritant
1,6-Hexanediol diacrylate	Rabbit	Irritant
Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide	Rabbit	No significant irritation
Benzophenone	Rabbit	No significant irritation
29H,31H-phthalocyaninato(2-)-N29,N30,N31,N32 copper	Rabbit	No significant irritation
Camphene	Rabbit	No significant irritation
Tris(nonylphenyl) phosphite	Rabbit	No significant irritation

Serious Eye Damage/Irritation

Name	Species	Value

3М^{тм} Piezo Inkjet Ink 8916UV Cyan

Isobornyl acrylate	Rabbit	Mild irritant
Isooctyl acrylate	similar health hazards	Mild irritant
Tetrahydrofurfuryl acrylate	Rabbit	Corrosive
2-Propenoic acid, 2-hydroxyethyl ester, polymer with 5-isocyanato-1-(isocyanatomethyl)-1,3,3- trimethylcyclohexane, 2-oxepanone and 2,2'- oxybis[ethanol]	similar compounds	Severe irritant
2-Propenoic acid, 1,6-hexanediyl ester, polymer with 2-aminoethanol	similar compounds	Severe irritant
1,6-Hexanediol diacrylate	Rabbit	Moderate irritant
Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide	Rabbit	No significant irritation
Benzophenone	Rabbit	Mild irritant
29H,31H-phthalocyaninato(2-)-N29,N30,N31,N32	Rabbit	No significant irritation
copper		
Camphene	Rabbit	Moderate irritant
Tris(nonylphenyl) phosphite	Rabbit	No significant irritation

Skin Sensitisation

Name	Species	Value
	-	
Isobornyl acrylate	Mouse	Sensitising
Isooctyl acrylate	Mouse	Sensitising
Tetrahydrofurfuryl acrylate	Professional judgement	Sensitising
2-Propenoic acid, 1,6-hexanediyl ester, polymer	similar compounds	Sensitising
with 2-aminoethanol		
1,6-Hexanediol diacrylate	Guinea pig	Sensitising
Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide	Mouse	Sensitising
Benzophenone	Guinea pig	Not classified
29H,31H-phthalocyaninato(2-)-N29,N30,N31,N32	Human	Not classified
copper		
Tris(nonylphenyl) phosphite	Guinea pig	Sensitising

Respiratory Sensitisation

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
	T T7.	
Isobornyl acrylate	In Vitro	Not mutagenic
Isooctyl acrylate	In Vitro	Some positive data exist, but the data are not sufficient for classification
Tetrahydrofurfuryl acrylate	In Vitro	Not mutagenic
1,6-Hexanediol diacrylate	In Vitro	Some positive data exist, but the data are not sufficient for classification
Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide	In Vitro	Not mutagenic
Benzophenone	In Vitro	Not mutagenic
Benzophenone	In vivo	Not mutagenic
29H,31H-phthalocyaninato(2-)-N29,N30,N31,N32 copper	In Vitro	Not mutagenic
Camphene	In Vitro	Not mutagenic
Camphene	In vivo	Not mutagenic
Tris(nonylphenyl) phosphite	In Vitro	Not mutagenic

Carcinogenicity

Name	Route	Species	Value
Isooctyl acrylate	Dermal	Mouse	Not carcinogenic
1,6-Hexanediol diacrylate	Dermal	Mouse	Not carcinogenic
Benzophenone	Dermal	Multiple animal	Not carcinogenic

		species	
Benzophenone	Ingestion	Multiple animal	Carcinogenic.
		species	
29H,31H-phthalocyaninato(2-)-	Ingestion	Mouse	Not carcinogenic
N29,N30,N31,N32 copper			
Tris(nonylphenyl) phosphite	Ingestion	Rat	Not carcinogenic

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
Isobornyl acrylate	Ingestion	Not classified for	Rat	NOAEL 500	31 days
	-	male reproduction		mg/kg/day	
Isobornyl acrylate	Ingestion	Not classified for	Rat	NOAEL 100	premating into
2 2	C	female reproduction		mg/kg/day	lactation
Isobornyl acrylate	Ingestion	Not classified for	Rat	NOAEL 100	premating into
5 5	U	development		mg/kg/day	lactation
Isooctyl acrylate	Dermal	Not classified for	Rat	NOAEL 57	premating & during
5 5		female reproduction		mg/kg/day	gestation
Isooctyl acrylate	Dermal	Not classified for	Rat	NOAEL 57	premating & during
		male reproduction		mg/kg/day	gestation
Isooctyl acrylate	Dermal	Not classified for	Rat	NOAEL 57	premating & during
5 5		development		mg/kg/day	gestation
Isooctyl acrylate	Ingestion	Not classified for	Rat	NOAEL	during
5 5	U	development		1,000	organogenesis
		1		mg/kg/day	0 0
Tetrahydrofurfuryl	Ingestion	Toxic to female	Rat	NOAEL 50	premating into
acrylate	e	reproduction		mg/kg/day	lactation
Tetrahydrofurfuryl	Dermal	Toxic to male	Rat	NOAEL 100	90 days
acrylate		reproduction		mg/kg/day	5
Tetrahydrofurfuryl	Ingestion	Toxic to male	Rat	NOAEL 35	90 days
acrylate	8	reproduction		mg/kg/day	× • •••••
Tetrahydrofurfuryl	Inhalation	Toxic to male	Rat	NOAEL 0.6	90 days
acrylate		reproduction		mg/l	y o uu y o
Tetrahydrofurfuryl	Ingestion	Toxic to development	Rat	NOAEL 50	premating into
acrylate	mgestion			mg/kg/day	lactation
1,6-Hexanediol	Not specified.	Not classified for	Rat	NOAEL 750	during
diacrylate	i tor specifica.	development		mg/kg/day	organogenesis
Diphenyl(2,4,6-	Ingestion	Not classified for	Rat	NOAEL 150	during gestation
trimethylbenzoyl)pho	mgestion	development		mg/kg/day	uuning geotution
sphine oxide		uevenopment			
Diphenyl(2,4,6-	Ingestion	Toxic to female	Rat	NOAEL 200	premating into
trimethylbenzoyl)pho	8	reproduction		mg/kg/day	lactation
sphine oxide		reproduction			
Diphenyl(2,4,6-	Ingestion	Toxic to male	Rat	NOAEL 60	85 days
trimethylbenzoyl)pho	8	reproduction		mg/kg/day	
sphine oxide		reproduction			
Benzophenone	Ingestion	Not classified for	Rat	NOAEL 100	2 generation
Bennophenone	ingestion	female reproduction		mg/kg/day	- Selleration
Benzophenone	Ingestion	Not classified for	Rat	NOAEL 80	2 generation
	8	male reproduction		mg/kg/day	- 8
Benzophenone	Ingestion	Not classified for	Rabbit	NOAEL 25	during gestation
Benzophenone	ingestion	development	raoon	mg/kg/day	during geotation
29H,31H-	Ingestion	Not classified for	Rat	NOAEL	premating into
phthalocyaninato(2-)-		female reproduction		1,000	lactation
N29,N30,N31,N32		ionale reproduction		mg/kg/day	
copper				ing Kg duy	
29H,31H-	Ingestion	Not classified for	Rat	NOAEL	42 days
phthalocyaninato(2-)-	115050011	male reproduction	1.ut	1,000	12 uuy5
		mare reproduction	1	1,000	1

copper					
29H,31H- phthalocyaninato(2-)- N29,N30,N31,N32 copper	Ingestion	Not classified for development	Rat	NOAEL 1,000 mg/kg/day	premating into lactation
Camphene	Ingestion	Not classified for development	Rat	NOAEL 1,000 mg/kg/day	during organogenesis
Tris(nonylphenyl) phosphite	Ingestion	Not classified for development	Rat	NOAEL 1,000 mg/kg/day	1 generation
Tris(nonylphenyl) phosphite	Ingestion	Not classified for female reproduction	Rat	NOAEL 200 mg/kg/day	1 generation
Tris(nonylphenyl) phosphite	Ingestion	Not classified for male reproduction	Rat	NOAEL 1,000 mg/kg/day	1 generation

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Isooctyl acrylate	Inhalation	respiratory irritation	Not classified	Human	NOAEL Not available	occupational exposure
Isooctyl acrylate	Ingestion	central nervous system depression	Not classified	Rat	NOAEL 5,000 mg/kg	
Tetrahydrofur furyl acrylate	Inhalation	respiratory irritation	May cause respiratory irritation	Human and animal	NOAEL Not available	
2-Propenoic acid, 2- hydroxyethyl ester, polymer with 5- isocyanato-1- (isocyanatome thyl)-1,3,3- trimethylcyclo hexane, 2- oxepanone and 2,2'- oxybis[ethano l]	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	
2-Propenoic acid, 1,6- hexanediyl ester, polymer with 2- aminoethanol	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	
1,6- Hexanediol diacrylate	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
Camphene	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	

Specific 7	Target Organ	Toxicity - re	peated exposure
speeme	i ai get Oi gan	I DAICILY - IC	peace exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Isobornyl acrylate	Ingestion	gastrointestinal tract immune system kidney and/or bladder heart endocrine system hematopoietic system liver nervous system respiratory system	Not classified	Rat	NOAEL 500 mg/kg/day	31 days
Isooctyl acrylate	Dermal	heart endocrine system hematopoietic system liver immune system nervous system kidney and/or bladder respiratory system	Not classified	Rat	NOAEL 57 mg/kg/day	premating & during gestation
Isooctyl acrylate	Ingestion	endocrine system liver kidney and/or bladder heart bone, teeth, nails, and/or hair hematopoietic system immune system muscles nervous system eyes respiratory system vascular system	Not classified	Rat	NOAEL 600 mg/kg/day	90 days
1,6- Hexanediol diacrylate	Dermal	skin	May cause damage to organs though prolonged or repeated exposure	Mouse	LOAEL 70 mg/kg/day	80 weeks
Diphenyl(2,4, 6- trimethylbenz oyl)phosphine oxide	Ingestion	skin blood liver kidney and/or bladder nervous system	Not classified	Rat	NOAEL 1,000 mg/kg/day	90 days
Benzophenon e	Ingestion	kidney and/or bladder	May cause damage to organs though prolonged or repeated exposure	Rat	LOAEL 75 mg/kg/day	14 weeks
Benzophenon e	Ingestion	heart hematopoietic system liver immune system endocrine system bone,	Not classified	Rat	NOAEL 850 mg/kg/day	14 weeks

		teeth, nails, and/or hair nervous system eyes respiratory system				
29H,31H- phthalocyanin ato(2-)- N29,N30,N31 ,N32 copper	Ingestion	endocrine system hematopoietic system respiratory system	Not classified	Rat	NOAEL 1,000 mg/kg/day	28 days
29H,31H- phthalocyanin ato(2-)- N29,N30,N31 ,N32 copper	Ingestion	kidney and/or bladder	Not classified	Multiple animal species	NOAEL Not available	not available
Camphene	Ingestion	liver kidney and/or bladder hematopoietic system	Not classified	Rat	NOAEL 1,000 mg/kg/day	28 days
Tris(nonylphe nyl) phosphite	Ingestion	liver	Not classified	Rat	NOAEL 500 mg/kg/day	2 years
Tris(nonylphe nyl) phosphite	Ingestion	kidney and/or bladder	Not classified	Rat	NOAEL 200 mg/kg/day	1 generation
Tris(nonylphe nyl) phosphite	Ingestion	respiratory system	Not classified	Rat	NOAEL 500 mg/kg/day	2 years

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Exposure Levels

Refer Section 8.1 Control Parameters of this Safety Data Sheet.

Interactive Effects

Not determined.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labelling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

Acute aquatic hazard: GHS Acute 1: Very toxic to aquatic life.

Chronic aquatic hazard:

GHS Chronic 2: Toxic to aquatic life with long lasting effects.

No product test data available.

Material	CAS Number	Organism	Туре	Exposure	Test endpoint	Test result
Isobornyl acrylate	5888-33-5	Green algae	Experimental	72 hours	EC50	1.98 mg/l
Isobornyl acrylate	5888-33-5	Zebra Fish	Experimental	96 hours	LC50	0.704 mg/l

T 1 1 1 (5000 22 5			70.1	NOTO	0.405 //
Isobornyl acrylate	5888-33-5	Green algae	Experimental	72 hours	NOEC	0.405 mg/l
Isobornyl acrylate	5888-33-5	Water flea	Experimental	21 days	NOEC	0.092 mg/l
Isooctyl acrylate	29590-42-9	Green algae	Estimated	72 hours	EC50	0.535 mg/l
Isooctyl acrylate	29590-42-9	Fathead minnow	Experimental	96 hours	LC50	0.67 mg/l
Isooctyl acrylate	29590-42-9	Water flea	Experimental	48 hours	EC50	0.4 mg/l
Isooctyl acrylate	29590-42-9	Water flea	Experimental	21 days	NOEC	0.065 mg/l
Isooctyl acrylate	29590-42-9	Activated sludge	Experimental	3 hours	EC50	>1,000 mg/l
Tetrahydrofurfuryl	2399-48-6	Activated sludge	Experimental	3 hours	EC50	263.7 mg/l
acrylate						
Tetrahydrofurfuryl	2399-48-6	Green algae	Experimental	72 hours	EC50	3.92 mg/l
acrylate						
acrylate	2399-48-6	Water flea	Experimental	48 hours	EC50	37.7 mg/l
Tetrahydrofurfuryl acrylate	2399-48-6	Zebra Fish	Experimental	96 hours	LC50	7.32 mg/l
Tetrahydrofurfuryl	2399-48-6	Green algae	Experimental	72 hours	EC10	2.48 mg/l
acrylate		-				
1,6-Hexanediol diacrylate	13048-33-4	Green algae	Experimental	72 hours	EC50	2.33 mg/l
1,6-Hexanediol	13048-33-4	Medaka	Experimental	96 hours	LC50	0.38 mg/l
diacrylate			-			-
1,6-Hexanediol	13048-33-4	Water flea	Experimental	48 hours	EC50	2.7 mg/l
diacrylate						
1,6-Hexanediol	13048-33-4	Green algae	Experimental	72 hours	NOEC	0.9 mg/l
diacrylate						
1,6-Hexanediol	13048-33-4	Medaka	Experimental	39 days	NOEC	0.072 mg/l
diacrylate						
1,6-Hexanediol	13048-33-4	Water flea	Experimental	21 days	NOEC	0.14 mg/l
diacrylate						
1,6-Hexanediol	13048-33-4	Activated sludge	Experimental	30 minutes	EC50	270 mg/l
diacrylate						
2-Propenoic acid,	67906-98-3	N/A	Data not available	N/A	N/A	N/A
1,6-hexanediyl			or insufficient for			
ester, polymer with			classification			
2-aminoethanol						
2-Propenoic acid,	72162-39-1	N/A	Data not available	N/A	N/A	N/A
2-hydroxyethyl			or insufficient for			
ester, polymer with			classification			
5-isocyanato-1-						
(isocyanatomethyl) -1,3,3-						
trimethylcyclohexa						
ne, 2-oxepanone						
and 2,2'-						
oxybis[ethanol]						
Diphenyl(2,4,6-	75980-60-8	Activated sludge	Experimental	3 hours	EC20	>1,000 mg/l
trimethylbenzoyl)p	75780-00-8	Activated studge	Experimental	5 110013	LC20	> 1,000 mg/1
hosphine oxide						
Diphenyl(2,4,6-	75980-60-8	Common Carp	Experimental	96 hours	LC50	1.4 mg/l
trimethylbenzoyl)p	15700 00 0	Common Curp	Experimental	50 nours	Leso	1.4 mg/1
hosphine oxide						
Diphenyl(2,4,6-	75980-60-8	Green algae	Experimental	72 hours	EC50	>2.01 mg/l
trimethylbenzoyl)p	, 5900 00-0	Sieen uigae		, 2 nouis		2.01 mg/1
hosphine oxide						
Diphenyl(2,4,6-	75980-60-8	Water flea	Experimental	48 hours	EC50	3.53 mg/l
trimethylbenzoyl)p			Lapormonum		1.000	5.00 mg/1
hosphine oxide						
Diphenyl(2,4,6-	75980-60-8	Green algae	Experimental	72 hours	EC10	1.56 mg/l
trimethylbenzoyl)p			-r			
hosphine oxide						
Benzophenone	119-61-9	Fathead minnow	Experimental	96 hours	LC50	10.89 mg/l
Benzophenone	119-61-9	Green algae	Experimental	72 hours	EC50	3.5 mg/l
Benzophenone	119-61-9	Water flea	Experimental	48 hours	EC50	6.8 mg/l
Benzophenone	119-61-9	Fathead minnow	Experimental	7 days	NOEC	2.1 mg/l
Benzophenone	119-61-9	Green algae	Experimental	72 hours	NOEC	1 mg/l
Benzophenone	119-61-9	Water flea	Experimental	21 days	NOEC	0.2 mg/l
29H,31H-	147-14-8					
1/90 310-	114/-14-0	Green algae	Estimated	72 hours	ErC50	>100 mg/l

phthalocyaninato(2	1					
-)-						
N29,N30,N31,N32						
copper						
29H.31H-	147-14-8	Water flea	Estimated	48 hours	EC50	>500 mg/l
phthalocyaninato(2	147 14 0	water nea	Estimated	40 110013	Leso	500 mg/r
-)-						
, N29,N30,N31,N32						
copper						
29H,31H-	147-14-8	Activated sludge	Experimental	30 minutes	EC20	750 mg/l
phthalocyaninato(2	1	i iou valou siaugo	Liperintental	50 1111111100	2020	, c o mg i
-)-						
, N29,N30,N31,N32						
copper						
29H.31H-	147-14-8	Bacteria	Experimental	30 minutes	EC10	>10,000 mg/l
phthalocyaninato(2			P			
-)-						
Ń29,N30,N31,N32						
copper						
29H,31H-	147-14-8	Rainbow trout	Experimental	96 hours	LC50	355.6 mg/l
phthalocyaninato(2			T			
-)-						
N29,N30,N31,N32						
copper						
29H.31H-	147-14-8	Green algae	Estimated	72 hours	ErC10	100 mg/l
phthalocyaninato(2						
-)-						
Ń29,N30,N31,N32						
copper						
29H,31H-	147-14-8	Water flea	Estimated	21 days	NOEC	>=1 mg/l
phthalocyaninato(2				-		
-)-						
N29,N30,N31,N32						
copper						
Camphene	79-92-5	Activated sludge	Experimental	3 hours	EC10	490.3 mg/l
Camphene	79-92-5	Green algae	Experimental	72 hours	EC50	1.75 mg/l
Camphene	79-92-5	Sheepshead	Experimental	96 hours	LC50	1.9 mg/l
		Minnow				
Camphene	79-92-5	Water flea	Experimental	48 hours	EC50	0.72 mg/l
Camphene	79-92-5	Zebra Fish	Experimental	96 hours	LC50	0.72 mg/l
Camphene	79-92-5	Green algae	Experimental	72 hours	NOEC	0.07 mg/l
Tris(nonylphenyl)	26523-78-4	Green algae	Experimental	72 hours	No tox obs at lmt	>100 mg/l
phosphite			r		of water sol	
Tris(nonylphenyl)	26523-78-4	Rainbow trout	Experimental	96 hours	No tox obs at lmt	>100 mg/l
phosphite					of water sol	
Tris(nonylphenyl)	26523-78-4	Water flea	Experimental	48 hours	EC50	0.3 mg/l
phosphite		, and neu		.0 110415		
Tris(nonylphenyl)	26523-78-4	Blackworm	Experimental	28 days	EC10	44 mg/kg (Wet Weight)
phosphite		2 mon worm		-0 uu,0		
Tris(nonylphenyl)	26523-78-4	Green algae	Experimental	72 hours	No tox obs at lmt	>100 mg/l
phosphite	20020 ,0-4			/2 110015	of water sol	
Prospinto	<u> </u>	1			01 11 11 101 501	1

12.2. Persistence and degradability

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Isobornyl acrylate	5888-33-5	Experimental Biodegradation	28 days	CO2 evolution	57 %CO2 evolution/THCO2 evolution	OECD 310 CO2 Headspace
Isooctyl acrylate	29590-42-9	Experimental Biodegradation	28 days	BOD	93 %BOD/ThOD	OECD 301D - Closed bottle test
Tetrahydrofurfuryl acrylate	2399-48-6	Experimental Biodegradation	28 days	BOD	77.7 %BOD/ThOD	OECD 301F - Manometric respirometry
Tetrahydrofurfuryl	2399-48-6	Experimental		Log Kow	0.81	

				1	
13048-33-4	Experimental	28 days	CO2 evolution	60-70 %CO2	ISO 14593 Inorg C
	Biodegradation			evolution/THCO2 evolution	Headspace
13048-33-4	Estimated		Photolytic half-life	1 days (t 1/2)	Episuite™
	Photolysis		(in air)		
67906-98-3	Data not	N/A	N/A	N/A	N/A
	insufficient				
72162-39-1	Data not	N/A	N/A	N/A	N/A
	available-				
	insufficient				
		-			
75980-60-8		28 days	BOD	$\leq 10 \% BOD/ThOD$	OECD 301F - Manometric
	Biodegradation				respirometry
119-61-9	1	28 days	BOD		OECD 301F - Manometric
		20.1	DOD		respirometry
147-14-8	1	28 days	BOD	<1 %BOD/ThOD	OECD 301F - Manometric
	Biodegradation				respirometry
70.02.5		20.1	DOD		
	Biodegradation	28 days			OECD 301C - MITI test (I)
79-92-5	Experimental Photolysis		Photolytic half-life (in air)	7.2 hours (t 1/2)	
26523-78-4	Experimental	28 days	BOD	<4 %BOD/ThOD	OECD 301D - Closed bottle test
		Biodegradation13048-33-4Estimated Photolysis67906-98-3Data not available- insufficient72162-39-1Data not available- insufficient75980-60-8Experimental Biodegradation119-61-9Experimental Biodegradation147-14-8Experimental Biodegradation79-92-5Experimental Biodegradation79-92-5Experimental 	Biodegradation13048-33-4Estimated Photolysis67906-98-3Data not available- insufficientN/A72162-39-1Data not available- insufficientN/A75980-60-8Experimental Biodegradation28 days119-61-9Experimental Biodegradation28 days147-14-8Experimental Biodegradation28 days79-92-5Experimental Biodegradation28 days79-92-5Experimental Biodegradation28 days79-92-5Experimental Biodegradation28 days79-92-5Experimental Biodegradation28 days79-92-5Experimental Biodegradation28 days26523-78-4Experimental Experimental Photolysis28 days	BiodegradationPhotolytic half-life (in air)13048-33-4Estimated PhotolysisPhotolytic half-life (in air)67906-98-3Data not available- insufficientN/AN/A72162-39-1Data not available- insufficientN/AN/A72162-39-1Data not available- insufficientN/AN/A75980-60-8Experimental Biodegradation28 daysBOD119-61-9Experimental Biodegradation28 daysBOD147-14-8Experimental Biodegradation28 daysBOD79-92-5Experimental Biodegradation28 daysBOD79-92-5Experimental Biodegradation28 daysBOD79-92-5Experimental Biodegradation28 daysBOD79-92-5Experimental Biodegradation28 daysBOD79-92-5Experimental Biodegradation28 daysBOD79-92-5Experimental Biodegradation28 daysBOD79-92-5Experimental Biodegradation28 daysBOD79-92-5Experimental BiodegradationPhotolytic half-life (in air)26523-78-4Experimental Experimental Photolysis28 daysBOD	Biodegradationevolution/THCO2 evolution13048-33-4Estimated PhotolysisPhotolytic half-life (in air)I days (t 1/2) (in air)67906-98-3Data not available- insufficientN/AN/AN/A72162-39-1Data not available- insufficientN/AN/AN/A72162-39-1Data not available- insufficientN/AN/AN/A75980-60-8Experimental Biodegradation28 daysBOD≤10 %BOD/ThOD119-61-9Experimental Biodegradation28 daysBOD66- 84 %BOD/ThOD147-14-8Experimental Biodegradation28 daysBOD<1 %BOD/ThOD

12.3 : Bioaccumulative potential

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Isobornyl acrylate	5888-33-5	Analogous Compound BCF - Fish	56 hours	Bioaccumulation factor	37	OECD305-Bioconcentration
Isooctyl acrylate	29590-42-9	Estimated Bioconcentration		Bioaccumulation factor	120-940	Catalogic™
Isooctyl acrylate	29590-42-9	Experimental Bioconcentration		Log Kow	4.6	
1,6-Hexanediol diacrylate	13048-33-4	Experimental Bioconcentration		Log Kow	2.81	
2-Propenoic acid, 1,6-hexanediyl ester, polymer with 2-aminoethanol	67906-98-3	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
2-Propenoic acid, 2-hydroxyethyl ester, polymer with 5-isocyanato-1- (isocyanatomethyl) -1,3,3- trimethylcyclohexa ne, 2-oxepanone and 2,2'- oxybis[ethanol]	72162-39-1	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Diphenyl(2,4,6- trimethylbenzoyl)p hosphine oxide	75980-60-8	Experimental BCF - Fish	56 days	Bioaccumulation factor	≤40	
Benzophenone	119-61-9	Experimental BCF	56 days	Bioaccumulation	<12	

		- Fish		factor		
29H,31H-	147-14-8	1	42 days	Bioaccumulation	<3.6	OECD305-Bioconcentration
phthalocyaninato(2		- Fish		factor		
-)-						
N29,N30,N31,N32						
copper						
Camphene	79-92-5	Experimental BCF	56 days	Bioaccumulation	606-1290	OECD305-Bioconcentration
		- Fish		factor		
Tris(nonylphenyl)	26523-78-4	Experimental		Log Kow	14	
phosphite		Bioconcentration				

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1. Disposal methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Incinerate uncured product in a permitted waste incineration facility. Proper destruction may require the use of additional fuel during incineration processes.

SECTION 14: Transport Information

Australian Dangerous Goods Code (ADG) - Road/Rail Transport

UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. , (ISOBORNYL ACRYLATE, ISOOCTYL ACRYLATE) Class/Division: 9 Sub Risk: Not applicable. Packing Group: III Special Instructions: Not restricted, environmentally hazardous substance exception. Hazchem Code: •3Z IERG: 47

International Air Transport Association (IATA) - Air Transport UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S., (ISOBORNYL ACRYLATE, ISOOCTYL ACRYLATE) Class/Division: 9 Sub Risk: Not applicable. Packing Group: III Special Instructions: Not restricted, as per Special Provision A197, environmentally hazardous substance exception.

International Maritime Dangerous Goods Code (IMDG)- Marine Transport UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S., (ISOBORNYL ACRYLATE, ISOOCTYL ACRYLATE) Class/Division: 9 Sub Risk: Not applicable. Packing Group: III Marine Pollutant: ISOBORNYL ACRYLATE, ISOOCTYL ACRYLATE Special Instructions: Not restricted, as per IMDG code 2.10.2.7, marine pollutant exception.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Australian Inventory Status:

An ingredient(s) in this product is being introduced under a Certificate (Standard/Limited/Polymer of Low Concern) granted under Section 39 of the Industrial Chemicals (Notification and Assessment) Act 1989 as amended.

Poison Schedule: This product is intended for Industrial or Professional Use only and therefore is not packaged and labelled in accordance with the requirements of the Standard for the Uniform Scheduling of Medicines and Poisons.

SECTION 16: Other information

Revision information:

Complete document review.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Safety Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications. Greenguard ® is a United States based program. The 'Low VOC' reference related to United States Federal and State

regulations exemptions for some solvents.

3M Australia SDSs are available at www.3m.com.au