

Safety Data Sheet

Copyright,2023, 3M Company.All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document group:	08-6267-2	Version number:	9.00
Issue Date:	01/02/2023	Supersedes date:	07/02/2022

This Safety Data Sheet has been prepared in accordance with the Preparation of Safety Data Sheets for Hazardous Chemicals Code of Practice (Safe Work Australia, December 2011)

IDENTIFICATION:

1.1. Product identifier

3M[™] Scotch-Weld[™] Low Odor Acrylic Adhesive DP810

Product Identification Numbers 62-3298-1436-2

1.2. Recommended use and restrictions on use

Recommended use Structural adhesive.

For Industrial or Professional use only.

1.3. Supplier's details

Address:	3M Australia - Building A, 1 Rivett Road, North Ryde NSW 2113
Telephone:	136 136
E Mail:	productinfo.au@mmm.com
Website:	www.3m.com.au

1.4. Emergency telephone number Company Emergency Hotline:EMERGENCY: 1800 097 146 (Australia only)

This product is a kit or a multipart product which consists of multiple, independently packaged components. A Safety Data Sheet for each of these components is included. Please do not separate the component Safety Data Sheets from this cover page. The document numbers of the SDSs for components of this product are:

08-6252-4, 08-6239-1

One or more components of this KIT is classified as a hazardous chemical according to the Model Work Health and Safety Regulations, 2011, in accordance with applicable State and Territory legislation.

TRANSPORT INFORMATION

The Dangerous Goods Classification for the complete Kit is provided below.

3MTM Scotch-WeldTM Low Odour Acrylic Adhesive DP810 Tan and Low Odour Acrylic Adhesive 810 Tan, Part A

UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S., (Acrylate Monomer, Cumene Hydroperoxide) Class/Division: 9 Packing Group: III Marine Pollutant: Acrylate Monomer, Cumene Hydroperoxide

Hazchem Code: -3Z IERG: 47

Australian Dangerous Goods Code (ADG) - Road/Rail Transport Special Instructions: Not restricted, environmentally hazardous substance exception.

International Air Transport Association (IATA)- Air Transport Special Instructions: Not restricted, as per Special Provision A197, environmentally hazardous substance exception.

International Maritime Dangerous Goods Code (IMDG) - Marine Transport Special Instructions: Not restricted, as per IMDG code 2.10.2.7, marine pollutant exception.

3MTM Scotch-WeldTM Low Odour Acrylic Adhesive DP810 Tan and Low Odour Acrylic Adhesive 810 Tan, Part B

UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S., (Phenoxy Ethyl Methacrylate) Class/Division: 9 Packing Group: III Marine Pollutant: Phenoxy Ethyl Methacrylate

Hazchem Code: -3Z IERG: 47

Australian Dangerous Goods Code (ADG) - Road/Rail Transport Special Instructions: Not restricted, environmentally hazardous substance exception.

International Air Transport Association (IATA)- Air Transport

Special Instructions: Not restricted, as per Special Provision A197, environmentally hazardous substance exception.

International Maritime Dangerous Goods Code (IMDG) - Marine Transport

Special Instructions: Not restricted, as per IMDG code 2.10.2.7, marine pollutant exception.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Safety Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

Greenguard ® is a United States based program. The 'Low VOC' reference related to United States Federal and State regulations exemptions for some solvents.

3M Australia SDSs are available at www.3m.com.au

Safety Data Sheet

Copyright,2023, 3M Company.All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document group:	08-6252-4	Version number:	8.00
Issue Date:	01/02/2023	Supersedes date:	05/09/2021

This Safety Data Sheet has been prepared in accordance with the Preparation of Safety Data Sheets for Hazardous Chemicals Code of Practice (Safe Work Australia, December 2011)

SECTION 1: Identification

1.1. Product identifier

3M[™] Scotch-Weld[™] Low Odour Acrylic Adhesive DP810 Tan and Low Odour Acrylic Adhesive 810 Tan, Part A

1.2. Recommended use and restrictions on use

Recommended use

Structural adhesive.

For Industrial or Professional use only.

1.3. Supplier's details

Address:	3M Australia - Building A, 1 Rivett Road, North Ryde NSW 2113
Telephone:	136 136
E Mail:	productinfo.au@mmm.com
Website:	www.3m.com.au

1.4. Emergency telephone number

EMERGENCY: 1800 097 146 (Australia only)

SECTION 2: Hazard identification

This product is classified as a hazardous chemical according to the Model Work Health and Safety Regulations, 2011, in accordance with applicable State and Territory legislation.

Refer to Section 14 of this Safety Data Sheets for product Dangerous Goods Classification.

2.1. Classification of the substance or mixture

Skin Corrosion/Irritation: Category 2.Serious Eye Damage/Irritation: Category 1.Skin Sensitizer: Category 1.Specific Target Organ Toxicity (repeated exposure): Category 2.

2.2. Label elements

The label elements below were prepared in accordance with the Code of Practice on Preparation of Safety Data Sheets for Hazardous Chemicals (Safe Work Australia, December 2011). This information may be different from the actual product label.

Signal word

Danger

Symbols

Corrosion |Exclamation mark |Health Hazard |

Pictograms

Hazard statements

H315	Causes skin irritation.
H318	Causes serious eye damage.
H317	May cause an allergic skin reaction.
H373	May cause damage to organs through prolonged or repeated exposure: nervous system respiratory system.

Precautionary statements

Prevention:				
P260	Do not breathe dust/fume/gas/mist/vapours/spray.			
P264	Wash thoroughly after handling.			
P272	Contaminated work clothing should not be allowed out of the wo	orkplace.		
P280B	Wear protective gloves and eye/face protection.	Wear protective gloves and eye/face protection.		
Response:				
P302 + P352	IF ON SKIN: Wash with plenty of soap and water.			
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes.	Remove contact		
	lenses, if present and easy to do. Continue rinsing.			
P310	Immediately call a POISON CENTRE or doctor/physician.			
P333 + P313	If skin irritation or rash occurs: Get medical advice/attention.			
P362 + P364	Take off contaminated clothing and wash it before reuse.			
Disposal:				
P501	Dispose of contents/container in accordance with applicable			
	local/regional/national/international regulations.			

2.3. Other assigned/identified product hazards None known.

2.4. Other hazards which do not result in classification

May be harmful if swallowed. May be harmful in contact with skin. May be harmful if inhaled. Toxic to aquatic life with long lasting effects.

SECTION 3: Composition/information on ingredients

This material is a mixture.

Ingredient	CAS Nbr	% by Weight
Phenoxyethyl Methacrylate	10595-06-9	10 - 40
2-Hydroxyethyl Methacrylate	868-77-9	10 - 30
Hydroxypropyl Methacrylate	27813-02-1	10 - 30
Acrylate oligomer	41637-38-1	5 - 20
Acrylonitrile-Butadiene Polymer	9010-81-5	5 - 20
α,α-Dimethylbenzyl hydroperoxide	80-15-9	1 - 5
2,2'-Methylenebis[6-tert-butyl-p-cresol]	119-47-1	< 1
Cumene	98-82-8	< 1

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

Skin contact

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

Eye contact

Immediately flush with large amounts of water for at least 15 minutes. Remove contact lenses if easy to do. Continue rinsing. Immediately get medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

Allergic skin reaction (redness, swelling, blistering, and itching). Serious damage to the eyes (corneal cloudiness, severe pain, tearing, ulcerations, and significantly impaired or loss of vision). Target organ effects following prolonged or repeated exposure. See Section 11 for additional details.

4.3. Indication of any immediate medical attention and special treatment required Not applicable

i tot upplicuole

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

Closed containers exposed to heat from fire may build pressure and explode.

Hazardous Decomposition or By-Products

<u>Substance</u>	<u>Condition</u>
Carbon monoxide.	During combustion.
Carbon dioxide.	During combustion.
Oxides of nitrogen.	During combustion.
Toxic vapour, gas, particulate.	During combustion.

5.3. Special protective actions for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

Hazchem Code: •3Z

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment. For larger spills, cover drains and build dykes to prevent entry into sewer systems or bodies of water.

6.3. Methods and material for containment and cleaning up

Contain spill. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue with an appropriate solvent selected by a qualified and authorised person. Ventilate the area with fresh air. Read and follow safety precautions on the solvent label and Safety Data Sheet. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/international regulations.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

For industrial/occupational use only. Not for consumer sale or use. Do not handle until all safety precautions have been read and understood. Do not breathe dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Keep away from reactive metals (eg. Aluminum, zinc etc.) to avoid the formation of hydrogen gas that could create an explosion hazard. Use personal protective equipment (eg. gloves, respirators...) as required.

7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from amines.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	CAS Nbr	Agency	Limit type	Additional comments
α,α-Dimethylbenzyl	80-15-9	AIHA	TWA:6 mg/m3(1 ppm)	SKIN
hydroperoxide				
Cumene	98-82-8	ACGIH	TWA:5 ppm	A3: Confirmed animal
				carcinogen.
Cumene	98-82-8	Australia OELs	TWA(8 hours): 125 mg/m3	SKIN
			(25 ppm); STEL(15	
			minutes): 375 mg/m3 (75 ppm)	

ACGIH : American Conference of Governmental Industrial Hygienists

AIHA : American Industrial Hygiene Association

Australia OELs : Australia. Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment

CMRG : Chemical Manufacturer's Recommended Guidelines

TWA: Time-Weighted-Average

STEL: Short Term Exposure Limit

CEIL: Ceiling

Sen: Sensitiser

Sk: Absorption through the skin may be a significant source of exposure.

8.2. Exposure controls

8.2.1. Engineering controls

Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapours/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Full face shield.

Indirect vented goggles.

Select and use eye protection in accordance with AS/NZS 1336. Eye protection should comply with the performance specifications of AS/NZS 1337.

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing.

Gloves made from the following material(s) are recommended: Fluoroelastomer

Select and use gloves according to AS/NZ 2161.

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapours and particulates

For questions about suitability for a specific application, consult with your respirator manufacturer. Select and use respirators according to AS/NZS 1715. Respirators should comply with AS/NZS 1716 performance specifications. For information about respirators, call 3M on 1800 024 464.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state	Liquid.
Specific Physical Form:	Paste
Colour	White
Odour	Low Odour
Odour threshold	No data available.
рН	Not applicable.
Melting point/Freezing point	Not applicable.
Boiling point/Initial boiling point/Boiling range	>=102.8 °C
Flash point	102.2 °C [Test Method:Closed Cup]

Evaporation rate	No data available.	
Flammability (solid, gas)	Not applicable.	
Flammable Limits(LEL)	No data available.	
Flammable Limits(UEL)	No data available.	
Vapour pressure	<=13.3 Pa	
Vapor Density and/or Relative Vapor Density	Not applicable.	
Density	1.07 g/ml	
Relative density	1.07 [<i>Ref Std</i> :WATER=1]	
Water solubility	Slight (less than 10%)	
Solubility- non-water	No data available.	
Partition coefficient: n-octanol/water	No data available.	
Autoignition temperature	No data available.	
Decomposition temperature	No data available.	
Viscosity/Kinematic Viscosity	20,000 mPa-s	
Volatile organic compounds (VOC)	No data available.	
Percent volatile	No data available.	
VOC less H2O & exempt solvents	Sempt solvents 3.1 g/l [<i>Details</i> :when used as intended with Part B]	
VOC less H2O & exempt solvents	0.3 % [Details: when used as intended with Part B]	
OC less H2O & exempt solvents 349 g/l [<i>Test Method</i> :tested per EPA method 24] [<i>Detail.</i>		
	supplied]	
Molecular weight	No data available.	

SECTION 10: Stability and reactivity

10.1 Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

10.2 Chemical stability

Stable.

10.3. Conditions to avoid

Heat.

Sparks and/or flames.

Heat is generated during cure. Do not cure a mass larger than 50 grams in a confined space to prevent a premature exothermic reaction with production of intense heat and smoke.

10.4. Possibility of hazardous reactions

Hazardous polymerisation may occur.

10.5 Incompatible materials Amines. Reducing agents. Reactive metals

10.6 Hazardous decomposition products

<u>Substance</u>

None known.

Condition

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labelling, an ingredient may not be available for exposure, or the data may not be

relevant to the material as a whole.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

May be harmful if inhaled. Respiratory tract irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain. May cause additional health effects (see below).

Skin contact

May be harmful in contact with skin.

Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, dryness, cracking, blistering, and pain. Allergic skin reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching.

Eye contact

Corrosive (eye burns): Signs/symptoms may include cloudy appearance of the cornea, chemical burns, severe pain, tearing, ulcerations, significantly impaired vision or complete loss of vision.

Ingestion

May be harmful if swallowed.

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea. May cause additional health effects (see below).

Additional Health Effects:

Prolonged or repeated exposure may cause target organ effects:

Neurological effects: Signs/symptoms may include personality changes, lack of coordination, sensory loss, tingling or numbness of the extremities, weakness, tremors, and changes in blood pressure and heart rate. Respiratory effects: Signs/symptoms may include cough, shortness of breath, chest tightness, wheezing, increased heart rate, bluish coloured skin (cyanosis), sputum production, changes in lung function tests, and respiratory failure.

Reproductive/Developmental Toxicity:

Contains a chemical or chemicals which can cause birth defects or other reproductive harm.

Carcinogenicity:

Contains a chemical or chemicals which can cause cancer.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >2,000 - =5,000 mg/kg
Overall product	Inhalation-Vapour(4		No data available; calculated ATE >20 -
	hr)		=50 mg/l
Overall product	Ingestion		No data available; calculated ATE >2,000 -
			=5,000 mg/kg
Phenoxyethyl Methacrylate	Dermal		LD50 estimated to be 2,000 - 5,000 mg/kg
Phenoxyethyl Methacrylate	Ingestion		LD50 estimated to be 2,000 - 5,000 mg/kg
2-Hydroxyethyl Methacrylate	Dermal	Rabbit	LD50 > 5,000 mg/kg
2-Hydroxyethyl Methacrylate	Ingestion	Rat	LD50 5,564 mg/kg

Acrylonitrile-Butadiene Polymer	Dermal		LD50 estimated to be > 5,000 mg/kg
Acrylonitrile-Butadiene Polymer	Ingestion		LD50 estimated to be 2,000 - 5,000 mg/kg
Hydroxypropyl Methacrylate	Dermal	Rabbit	LD50 > 5,000 mg/kg
Hydroxypropyl Methacrylate	Ingestion	Rat	LD50 > 11,200 mg/kg
Acrylate oligomer	Dermal	Rat	LD50 > 2,000 mg/kg
Acrylate oligomer	Ingestion	Rat	LD50 > 2,000 mg/kg
α,α-Dimethylbenzyl hydroperoxide	Dermal	Rat	LD50 500 mg/kg
α,α-Dimethylbenzyl hydroperoxide	Inhalation-Vapour (4	Rat	LC50 1.4 mg/l
	hours)		
α,α-Dimethylbenzyl hydroperoxide	Ingestion	Rat	LD50 382 mg/kg
Cumene	Dermal	Rabbit	LD50 > 3,160 mg/kg
Cumene	Inhalation-Vapour (4	Rat	LC50 39.4 mg/l
	hours)		
Cumene	Ingestion	Rat	LD50 1,400 mg/kg
2,2'-Methylenebis[6-tert-butyl-p-	Dermal	Rabbit	LD50 > 10,000 mg/kg
cresol]			
2,2'-Methylenebis[6-tert-butyl-p-	Ingestion	Rat	LD50 > 5,000 mg/kg
cresol]			

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Phenoxyethyl Methacrylate	similar compounds	Irritant
2-Hydroxyethyl Methacrylate	Rabbit	Minimal irritation
Acrylonitrile-Butadiene Polymer	Professional judgement	No significant irritation
Hydroxypropyl Methacrylate	Rabbit	Minimal irritation
Acrylate oligomer	In vitro data	No significant irritation
α,α-Dimethylbenzyl hydroperoxide	Rabbit	Corrosive
Cumene	Rabbit	Minimal irritation

Serious Eye Damage/Irritation

Name	Species	Value
Phenoxyethyl Methacrylate	similar compounds	Severe irritant
2-Hydroxyethyl Methacrylate	Rabbit	Moderate irritant
Acrylonitrile-Butadiene Polymer	Professional judgement	No significant irritation
Hydroxypropyl Methacrylate	Rabbit	Moderate irritant
Acrylate oligomer	In vitro data	No significant irritation
α,α-Dimethylbenzyl hydroperoxide	Rabbit	Corrosive
Cumene	Rabbit	Mild irritant

Skin Sensitisation

Name	Species	Value
2-Hydroxyethyl Methacrylate	Human and animal	Sensitising
Hydroxypropyl Methacrylate	Human and animal	Sensitising
Acrylate oligomer	Multiple animal species	Not classified
Cumene	Guinea pig	Not classified

Respiratory Sensitisation

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
Phenoxyethyl Methacrylate	In Vitro	Not mutagenic

3M[™] Scotch-Weld[™] Low Odour Acrylic Adhesive DP810 Tan and Low Odour Acrylic Adhesive 810 Tan, Part A

2-Hydroxyethyl Methacrylate	In vivo	Not mutagenic
2-Hydroxyethyl Methacrylate	In Vitro	Some positive data exist, but the data are not
		sufficient for classification
Hydroxypropyl Methacrylate	In vivo	Not mutagenic
Hydroxypropyl Methacrylate	In Vitro	Some positive data exist, but the data are not
		sufficient for classification
Acrylate oligomer	In Vitro	Not mutagenic
α,α-Dimethylbenzyl hydroperoxide	In vivo	Not mutagenic
α, α -Dimethylbenzyl hydroperoxide	In Vitro	Some positive data exist, but the data are not
		sufficient for classification
Cumene	In Vitro	Not mutagenic
Cumene	In vivo	Not mutagenic

Carcinogenicity

Name	Route	Species	Value
Cumene	Inhalation	Multiple animal	Carcinogenic.
		species	

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
2-Hydroxyethyl	Ingestion	Not classified for	Rat	NOAEL	premating & during
Methacrylate		female reproduction		1,000	gestation
				mg/kg/day	
2-Hydroxyethyl	Ingestion	Not classified for	Rat	NOAEL	49 days
Methacrylate		male reproduction		1,000	
				mg/kg/day	
2-Hydroxyethyl	Ingestion	Not classified for	Rat	NOAEL	premating & during
Methacrylate		development		1,000	gestation
				mg/kg/day	
Hydroxypropyl	Ingestion	Not classified for	Rat	NOAEL	premating into
Methacrylate		female reproduction		1,000	lactation
				mg/kg/day	
Hydroxypropyl	Ingestion	Not classified for	Rat	NOAEL	49 days
Methacrylate		male reproduction		1,000	
				mg/kg/day	
Hydroxypropyl	Ingestion	Not classified for	Rat	NOAEL	during gestation
Methacrylate		development		1,000	
				mg/kg/day	
Acrylate oligomer	Ingestion	Not classified for	Rat	NOAEL	premating into
		female reproduction		1,000	lactation
				mg/kg/day	
Acrylate oligomer	Ingestion	Not classified for	Rat	NOAEL	28 days
		male reproduction		1,000	
				mg/kg/day	
Acrylate oligomer	Ingestion	Not classified for	Rat	NOAEL	during gestation
		development		1,000	
				mg/kg/day	
Cumene	Inhalation	Not classified for	Rabbit	NOAEL 11.3	during
		development		mg/l	organogenesis
2,2'-Methylenebis[6-	Ingestion	Not classified for	Rat	NOAEL 50	premating & during
tert-butyl-p-cresol]		female reproduction		mg/kg/day	gestation
2,2'-Methylenebis[6-	Ingestion	Toxic to male	Rat	NOAEL 12.5	50 days
tert-butyl-p-cresol]		reproduction		mg/kg/day	

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Hydroxyprop yl Methacrylate	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	
α,α- Dimethylbenz yl hydroperoxide	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	occupational exposure
α,α- Dimethylbenz yl hydroperoxide	Inhalation	respiratory irritation	May cause respiratory irritation	Human	NOAEL Not available	occupational exposure
α,α- Dimethylbenz yl hydroperoxide	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Professional judgement	NOAEL Not available	
Cumene	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Multiple animal species	NOAEL Not available	not available
Cumene	Inhalation	respiratory irritation	May cause respiratory irritation	Human	LOAEL 0.2 mg/l	occupational exposure
Cumene	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Multiple animal species	NOAEL Not available	not available

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target	Value	Species	Test result	Exposure
Hydroxyprop yl Methacrylate	Inhalation	blood	Not classified	Rat	NOAEL 0.5 mg/l	21 days
Hydroxyprop yl Methacrylate	Ingestion	hematopoietic system heart endocrine system liver immune system nervous system kidney and/or bladder	Not classified	Rat	NOAEL 1,000 mg/kg/day	41 days
Acrylate oligomer	Ingestion	hematopoietic system liver immune system kidney and/or bladder endocrine system eyes	Not classified	Rat	NOAEL 1,000 mg/kg/day	13 weeks
α,α- Dimethylbenz yl hydroperoxide	Inhalation	nervous system respiratory system	Causes damage to organs through prolonged or repeated exposure	Rat	LOAEL 0.2 mg/l	7 days
α,α- Dimethylbenz yl hydroperoxide	Inhalation	heart liver kidney and/or bladder	Not classified	Rat	NOAEL 0.03 mg/l	90 days
Cumene	Inhalation	auditory system endocrine system	Not classified	Rat	NOAEL 59 mg/l	13 weeks

		hematopoietic system liver nervous system eyes				
Cumene	Inhalation	kidney and/or bladder	Not classified	Rat	NOAEL 4.9 mg/l	13 weeks
Cumene	Inhalation	respiratory system	Not classified	Rat	NOAEL 59 mg/l	13 weeks
Cumene	Ingestion	kidney and/or bladder heart endocrine system hematopoietic system liver respiratory system	Not classified	Rat	NOAEL 769 mg/kg/day	6 months

Aspiration Hazard

Name	Value
Cumene	Aspiration hazard

Exposure Levels

Refer Section 8.1 Control Parameters of this Safety Data Sheet.

Interactive Effects

Not determined.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labelling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

Acute aquatic hazard: GHS Acute 2: Toxic to aquatic life.

Chronic aquatic hazard:

GHS Chronic 2: Toxic to aquatic life with long lasting effects.

No product test data available.

Material	CAS Number	Organism	Туре	Exposure	Test endpoint	Test result
Phenoxyethyl Methacrylate	10595-06-9	Activated sludge	Analogous Compound	3 hours	EC50	177 mg/l
Phenoxyethyl Methacrylate	10595-06-9	Golden Orfe	Analogous Compound	96 hours	LC50	10 mg/l
Phenoxyethyl Methacrylate	10595-06-9	Green algae	Analogous Compound	96 hours	ErC50	4.4 mg/l
Phenoxyethyl Methacrylate	10595-06-9	Water flea	Analogous Compound	48 hours	EC50	1.21 mg/l
Phenoxyethyl Methacrylate	10595-06-9	Green algae	Analogous Compound	96 hours	ErC10	0.74 mg/l
2-Hydroxyethyl Methacrylate	868-77-9	Turbot	Analogous Compound	96 hours	LC50	833 mg/l
2-Hydroxyethyl	868-77-9	Fathead minnow	Experimental	96 hours	LC50	227 mg/l

Membershalt Orecn algae Experimental 72 hours FCS0 710 mg/l Membershalt 868-77-9 Water flea Experimental 48 hours FCS0 380 mg/l 214ydroxyethyl 868-77-9 Water flea Experimental 12 hours NOEC 160 mg/l 214ydroxyethyl 868-77-9 Water flea Experimental 16 hours ECO -3,000 mg/l 214ydroxyethyl 868-77-9 NA Experimental 16 hours ECO -3,000 mg/l 214ydroxyethyl 868-77-9 NA Experimental 16 hours ECO -3,000 mg/l 214ydroxyethyl 868-77-9 N/A Experimental 18 hours ECO -3,000 mg/l 214ydroxyethyl 868-77-9 N/A Experimental N/A ECI 1,140 mg/l 214ydroxyethyl 868-77-9 N/A Experimental N/A ECI 1,140 mg/l 14pdroxyporpl 2781-02-1 Golden Orte Experimental N/A ECI 92.00 mg/l Medi		1	1	1		1	1
$ \begin{array}{c} -4 \log (2 + \log (2 + 1)) \\ (-4 \log (2 $	Methacrylate	0.00 77 0			50.1	12050	
Methacylatic Methacylatic MethacylaticSec 77-9Water flee Gene algaeExperimental Experimental48 hoursECS 0380 mg/lMethacylatic Methacylatic868-77-9Green algaeExperimental Experimental21 laysNOEC24.1 mg/l2.Hydroxychyl Methacylatic868-77-9N/AExperimental Experimental16 hoursECO>3.000 mg/l2.Hydroxychyl Methacylatic868-77-9N/AExperimental Experimental18 hoursECO>3.000 mg/l2.Hydroxychyl Methacylatic868-77-9N/AExperimental Experimental18 hoursECO>3.000 mg/l1.Hydroxychyl Methacylatic2781-302-1Bacteria Golden OrteExperimental ExperimentalN/AEC101.140 mg/l1.Hydroxychyl Methacylatic2781-302-1Golden OrteExperimental Experimental72 hoursECS 097.2 mg/l1.Hydroxycroyp1 Methacylatic2781-302-1Green algaeExperimental Experimental72 hoursNOEC97.2 mg/l1.Hydroxycroyp1 Methacylatic2781-302-1Green algaeExperimental Experimental72 hoursNOEC97.2 mg/l1.Hydroxycroyp1 Methacylatic14637-38-1Green algaeExperimental Experimental72 hoursNOEC45.2 mg/l1.Hydroxycroyp1 Methacylatic14637-38-1Green algaeFerimated72 hoursNOEC45.2 mg/l1.Hydroxycroyp1 Methacylatic14637-38-1Green algaeFerimated72 hoursNO toc os at how	2-Hydroxyethyl	868-77-9	Green algae	Experimental	72 hours	EC50	710 mg/l
$ \begin{array}{c} -24 \operatorname{pconv}(\operatorname{print}) \\ -24 \operatorname{pconv}($	Methacrylate	0.00 55 0	luu a		40.1	12050	
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	2-Hydroxyethyl	868-77-9	Water flea	Experimental	48 hours	EC50	380 mg/l
$ \begin{array}{c} -4 \operatorname{View}(\operatorname{pin}) \\ -2 \operatorname{View}(\operatorname{pin}) \\ -$		9(9.77.0	Course along	E	72 h	NOEC	160
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2-Hydroxyethyl Methacrylate	808-77-9	Green algae	Experimental	/2 nours	NOEC	160 mg/1
$ \begin{array}{c} 1 \operatorname{disc} \operatorname{Start} \\ \operatorname{obs} \operatorname{Start} \\ \operatorname{obs} \operatorname{Start} \\ \operatorname{Start} \operatorname{disc} \operatorname{Start} \\ \operatorname{Start} \operatorname{disc} \operatorname{Start} \\ \operatorname{Start} \operatorname{Start} \\ \operatorname{Start} \operatorname{Start} \\ \operatorname{Start} \operatorname{Start} \\ Star$	2 Hudroyyathul	969 77 0	Water flee	Experimental	21 davis	NOEC	24.1 mg/l
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Methacrylate	808-77-9	water nea	Experimental	21 uays	NOLC	24.1 mg/1
MethacrylateN/AExperimentalN/AExperimentalN/AExperimental11 drudox propy27813-02-1BacteriaExperimentalN/AEC101,140 mg1Methacrylate19/200227813-02-1Golden OrfeExperimentalN/AEC101,140 mg1Methacrylate19/200227813-02-1Golden OrfeExperimental48 hoursEC50493 mg1Methacrylate19/200227813-02-1Green algaeExperimental48 hoursEC50>143 mg1Methacrylate11/2000227813-02-1Water fleeExperimental21 hoursNOEC97.2 mg1Methacrylate11/2000212/213-02-1Water fleeExperimental21 daysNOEC97.2 mg1Methacrylate11/2000212/813-02-1Water fleeExperimental21 daysNOEC97.2 mg1Methacrylate14/637-38-1Activated sludgeEstimated3 hoursEC50>1.000 mg1Acrylate aligomer41637-38-1Green algaeEstimated72 hoursNo tox bots at Imt>100 mg1Acrylate aligomer41637-38-1Green algaeEstimated96 hoursN/AN/AN/AAcrylate aligomer41637-38-1Green algaeExperimental18 hoursEC100.103 mg1Bataliere Polymer010-81-5N/AData not availableN/AN/AN/AN/ABataliere Polymer010-81-5N/AData not availableN/AN/AN/ABatali	2-Hydroxyethyl	868-77-9	N/A	Experimental	16 hours	FC0	>3 000 mg/l
214/j.tr.yovathyl 868-77-9 N/A Experimental 18 hours LD50 <98 mg per kg of bodyweight	Methacrylate	000-77-9	11/21	Experimental	10 110013	LCO	> 5,000 mg/1
Methacrylate MethacrylateOr 10PAR ProductionDecompositionDecompositionDecompositionMethacrylate Methacrylate 	2-Hydroxyethyl	868-77-9	N/A	Experimental	18 hours	LD50	<98 mg per kg of bodyweight
Hydroxypropyl WethacrylateBateria Wethacrylate Wethacrylate Wethacrylate Wethacrylate WethacrylateSecond Wethacrylate Wethacrylate Wethacrylate Wethacrylate WethacrylateSecond Wethacrylate Wethacrylate Wethacrylate Wethacrylate Wethacrylate Wethacrylater Wethacrylater Wethacry	Methacrylate			Laponnionan	10 110 110	2200	young pering of oody weight
MethacrylateImage: Constraint of the spectra of the spe	Hvdroxypropyl	27813-02-1	Bacteria	Experimental	N/A	EC10	1.140 mg/l
Hydroxyprop1 Wethacrylate Wethacrylate (Wethacrylate Wethacrylate (Wethacrylate Wethacrylate (Wethacrylate Wethacrylate (Wethacrylate Wethacrylate (Wethacrylate Wethacrylate (Wethacrylate Wethacrylate (Wethacrylate) (Wethacrylate)27813-02-1 (Wethacrylate) (Wethacrylate) (Wethacrylate) (Wethacrylate) (Wethacrylate) (Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate) (Wethacrylate) (Wethacrylate) (Wethacrylate) (Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate) (Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate) (Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate)(Wethacrylate) (Wethacrylate)(Wethacrylate) (Weth	Methacrylate			r · · ···			,
Methaciylatic hydroxyropyl Wethaciylatic Hydroxyropyl Wethaciylatic Hydroxyropyl Pid	Hydroxypropyl	27813-02-1	Golden Orfe	Experimental	48 hours	EC50	493 mg/l
Hydroxypropyl webchacrylate2781-30-2-1 (Rena lgae)Green algaeExperimental72 hoursErC50>97.2 mg/lHydroxypropyl webchacrylate27813-02-1 (Rena lgae)Water fleaExperimental48 hoursEC50>143 mg/lHydroxypropyl webchacrylate27813-02-1 (Rena lgae)Green algaeExperimental72 hoursNOEC97.2 mg/lHydroxypropyl Methacrylate27813-02-1 (Rena lgae)Water fleaExperimental21 daysNOEC45.2 mg/lAcrylate oligomer Acrylate oligomer41637-38-1 (Acrylate oligomerActivated sludgeEstimated3 hoursEC50>1.000 mg/lAcrylate oligomer (Acrylate oligomer41637-38-1 (Acrylate oligomerGreen algaeEstimated72 hoursNo tox obs at Int No tox obs at Int (Arwater sol)>100 mg/lAcrylate oligomer (Acrylate iligomer41637-38-1 (Acrylate oligomerGreen algaeEstimated72 hoursNo tox obs at Int (Arwater sol)>100 mg/lAcrylate iligomer (Acrylate)9010-81-5 (Acrylate)N/AData not available (or insufficient for (classification for (clas	Methacrylate			1			C .
Methacrylatic Hydroxypropyl (Pidroxypropyl)2781-30-2.1 Water fleaWater fleaExperimental Experimental48 hoursEC50>143 mg/lMethacrylate Hydroxypropyl Methacrylate2781-30-2.1 Water fleaGreen algaeExperimental Experimental72 hoursNOEC97.2 mg/lMethacrylate Methacrylate2781-30-2.1 Water fleaWater fleaExperimental Experimental21 daysNOEC45.2 mg/lMethacrylate Methacrylate2781-30-2.1 Water fleaMart fleaExperimental Experimental21 daysNOEC45.2 mg/lAcrylate oligomer Acrylate oligomer41637-38-1 41637-38-1Green algaeEstimated72 hoursNo tox obs at Int of water sol>100 mg/l of water solAcrylate oligomer Buadiene Polymer9010-81-5 9010-81-5N/AData not available or ms/fittent for classificationN/AN/AN/ABundene Polymer (a.a. Dimethylbenzyl Mydroperoxide (a.a. Dimethylbenzyl Mydroperoxide80-15-9BacteriaExperimental Experimental18 hoursEC100.103 mg/lMethacrylater (a.a. Dimethylbenzyl Mydroperoxide (a.a. Dimethylbenzyl Mydroperoxide80-15-9Green algaeExperimental Experimental72 hoursEC503.1 mg/lMethacrylater Mydroperoxide (a.a. Dimethylbenzyl Mydroperoxide (a.a. Dimethylbenzyl Mydroperoxide80-15-9Green algaeExperimental Experimental72 hoursEC5018.84 mg/lMydroperoxide (a.a. Dimethylbenzyl Mydropero	Hydroxypropyl	27813-02-1	Green algae	Experimental	72 hours	ErC50	>97.2 mg/l
Hydroxypropyl wethacrylate2713-02-1 (RefnameWater fleaExperimental Experimental48 hoursEC50>143 mg/lHydroxypropyl wethacrylate2713-02-1 (RefnameGreen algaeExperimental72 hoursNOEC97.2 mg/lHydroxypropyl wethacrylate2713-02-1 (RefnameWater fleaExperimental21 daysNOEC45.2 mg/lHydroxypropyl Acrylate oligomer41637-38-1 (Acrivate oligomerActivated sludgeEstimated3 hoursEC50>1000 mg/lAcrylate oligomer41637-38-1 (RefnameRainbow troutEstimated96 hoursNo tox obs at lnnt of water sol>100 mg/lAcrylate oligomer41637-38-1 (RefnameGreen algaeEstimated72 hoursNo tox obs at lnnt of water sol>100 mg/lAcrylate oligomer41637-38-1 (RefnameGreen algaeEstimated72 hoursNo tox obs at lnnt of water sol>100 mg/lAcrylate oligomer9010-81-5 (RefnameN/AData not available of in sufficient for classificationN/AN/AN/Aa.a.80-15-9BacteriaExperimental18 hoursEC503.1 mg/lDimethylbenzyl hydroperoxide80-15-9Green algaeExperimental96 hoursLC503.9 mg/lJordemerylbenzyl hydroperoxide80-15-9Water fleaExperimental48 hoursEC5011 mg/lJordemerylbenzyl hydroperoxide10-15-9Green algaeExperimental72 hoursNOEC1 mg/l2.	Methacrylate		-	-			-
Methacrylate Methacrylate Hydroxyroyd2781-302-1 RefracrylateGreen algae ExperimentalExperimental 72 hoursNOEC97.2 mg/lMethacrylate Methacrylate2731-302-1Water fleaExperimental Experimental21 daysNOEC45.2 mg/lAcrylate oligomer Acrylate oligomer41637-38-1Activated sludge EstimatedEstimated72 hoursNo tox obs at lmt of water sol>100 mg/lAcrylate oligomer Acrylate oligomer41637-38-1Rainbow troutEstimated22 hoursNo tox obs at lmt of water sol>100 mg/lAcrylate oligomer Acrylate oligomer41637-38-1Rainbow troutEstimated22 hoursNo tox obs at lmt of water sol>100 mg/lAcrylate oligomer Butadine Polymer9010-81-5N/AData not available or insufficient for elassificationN/AN/AN/AButadine Polymer67ecn algaeExperimental18 hoursEC100.103 mg/lurd. bydroperoxide a.g.80-15-9BacteriaExperimental18 hoursEC503.9 mg/lDimethylbenzyl hydroperoxide a.g.80-15-9Rainbow troutExperimental48 hoursEC5018.84 mg/lDimethylbenzyl hydroperoxide a.g.80-15-9Green algaeExperimental48 hoursEC5018.84 mg/lDimethylbenzyl hydroperoxide a.g.80-15-9Green algaeExperimental22 hoursEC50100 mg/l2.2-*119-47-1Green algaeExperimental3 hoursEC50<	Hydroxypropyl	27813-02-1	Water flea	Experimental	48 hours	EC50	>143 mg/l
Hydroxypropyl wethaarylateZiroursNOEC97.2 mg/l 97.2 mg/lHydroxypropyl wethaarylateZiroursNOEC45.2 mg/lHydroxypropyl wethaarylateZiroursNOEC45.2 mg/lAcrylate oligomer Acrylate oligomer41637-38-1Activated sludgeEstimated3 hoursECS0>1,000 mg/lAcrylate oligomer Acrylate oligomer41637-38-1Green algaeEstimated72 hoursNo tox obs at Int of water sol>100 mg/lAcrylate oligomer butadiene Polymer9010-81-5N/AData not available or insufficient forN/AN/AN/AAcrylate oligomer a.c.9010-81-5N/AData not available or insufficient forN/AN/AN/Aa.d. a.d.80-15-9BacteriaExperimental18 hoursEC100.103 mg/lDimethylbenzyl hydroperoxideRainbow trout a.d.Experimental72 hoursSC503.1 mg/lMydroperoxide a.d.80-15-9Green algaeExperimental96 hoursLC503.9 mg/lDimethylbenzyl hydroperoxide a.d.80-15-9Green algaeExperimental48 hoursEC501.8 s4 mg/lDimethylbenzyl hydroperoxide80-15-9Green algaeExperimental72 hoursAcco1.9 mg/lDimethylbenzyl hydroperoxide80-15-9Green algaeExperimental72 hoursCS03.9 mg/lDimethylbenzyl hydroperoxide80-15-9Green algaeExperimental72 hoursCS01.000 mg	Methacrylate						
Methacrylate Methacrylate MethacrylateValue ValueValue NotexNotex $452 mg/1$ Methacrylate Methacrylate27813-02-1 MethacrylateWater fleaExperimental Experimental3 hoursECS0 $>1,000 mg/1$ Acrylate oligomer Acrylate oligomer41637-38-1 41637-38-1Reinbow trout Green algaeEstimated3 hoursECS0 $>1,000 mg/1$ Acrylate oligomer Acrylate oligomer41637-38-1 41637-38-1Reinbow trout Green algaeEstimated72 hours PolonsNo tox obs at Int of water sol $>100 mg/1$ Acrylate oligomer Butadiene Polymer9010-81-5 9N/A BatceriaData not available or insufficient for classificationN/A PolanN/A N/AN/AMotox obs at Int of water sol $>100 mg/1$ $00 mg/1$ Methacrylate greac9010-81-5N/A BatceriaN/A ExperimentalN/A PolanN/A N/AN/AMotox obs at Int of water sol $>100 mg/1$ $00 mg/1$ $00 mg/1$ Muthoperoxide a.a-80-15-9Bacteria Green algaeExperimental18 hoursEC10 $0.103 mg/1$ Muthoperoxide a.a-80-15-9Rainbow trout methylencylExperimental Polonentylencyl $270 hours$ EC50 $3.9 mg/1$ Muthoperoxide a.a-80-15-9Green algaeExperimental Experimental $48 hours$ EC50 $18.84 mg/1$ Muthoperoxide a.a- a_{a} a_{a} a_{a} a_{a} a_{a} a_{a} a_{a} <t< td=""><td>Hydroxypropyl</td><td>27813-02-1</td><td>Green algae</td><td>Experimental</td><td>72 hours</td><td>NOEC</td><td>97.2 mg/l</td></t<>	Hydroxypropyl	27813-02-1	Green algae	Experimental	72 hours	NOEC	97.2 mg/l
Hydroxypropyl Methacrylate Acrylate oligomet Acrylate oligomet Al 6157-38-1Water flea Activated sludge Estimated Serial ConstraintsExperimental Stand PhoursNOEC No Kox 0s at Intl No tox obs at Intl of water sol of water sol of water sol of water solN/A No tox obs at Intl of water sol of water sol of water sol100 mg/l >100 mg/lAcrylate oligomet Acrylate oligomet41637-38-1 Acrylate oligometGreen algae Green algaeEstimated Estimated96 hours of water sol of water sol>100 mg/l of water sol of water solAcrylate oligomet Acrylonitrile- Butadiene Polymet9010-81-5 BatefriaN/A BatefriaData not available or insufficient for ClassificationN/A of water solN/A of water sol09010-81-5 Butadiene PolymetN/A BatefriaData not available or insufficient for ClassificationN/A of water solN/A of water solN/A of water sol09010-81-5 Butadiene Polymet80-15-9 BateriaGreen algaeExperimental Experimental18 hoursEC100.103 mg/l0Jimethylbenzyl hydroperoxide a.g.a80-15-9 BateriaGreen algaeExperimental Experimental72 hoursEC503.9 mg/l0Jimethylbenzyl hydroperoxide80-15-9Green algaeExperimental Experimental72 hoursEC5018.84 mg/l0Jimethylbenzyl hydroperoxide80-15-9Green algaeExperimental Experimental72 hoursNOEC1 mg/l2.2.* Methylenebis[6- <td>Methacrylate</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Methacrylate						
MethacrylateImage: A crylate oligomerImage: A crylate oligomerIm	Hydroxypropyl	27813-02-1	Water flea	Experimental	21 days	NOEC	45.2 mg/l
Acrylate oligomer41637-38-1Activated sludgeEstimated3 hoursECS0 $>1000 \text{ mg/l}$ Acrylate oligomer41637-38-1Green algaeEstimated72 hoursNo tox obs at Int of water sol>100 mg/lAcrylate oligomer41637-38-1Rainbow troutEstimated96 hoursNo tox obs at Int of water sol>100 mg/lAcrylate oligomer41637-38-1Green algaeEstimated72 hoursNo tox obs at Int of water sol>100 mg/lAcrylate oligomer41637-38-1Green algaeEstimated72 hoursNo tox obs at Int 	Methacrylate						
Acrylate oligomer 41637-38-1 Green algae Estimated 72 hours No tox obs at lmt >100 mg/l Acrylate oligomer 41637-38-1 Rainbow trout Estimated 96 hours No tox obs at lmt >100 mg/l Acrylate oligomer 41637-38-1 Green algae Estimated 72 hours No tox obs at lmt >100 mg/l Acrylate oligomer 41637-38-1 Green algae Estimated 72 hours No tox obs at lmt >100 mg/l Acrylate oligomer 41637-38-1 Green algae Estimated 72 hours No tox obs at lmt >100 mg/l Acrylate oligomer 41637-38-1 Green algae Estimated 72 hours No tox obs at lmt >100 mg/l Marcylate oligomer 9010-81-5 N/A Data not available or insufficient for classification N/A N/A N/A g.a. 0 So 15-9 Bacteria Experimental 72 hours EC50 3.1 mg/l Dimethylbenzyl hydroperoxide 80-15-9 Water flea Experimental 72 hours EC50 18.84 mg/l Dimethylbenzyl hydroperoxide 80-15-9 Green algae Experimental <td>Acrylate oligomer</td> <td>41637-38-1</td> <td>Activated sludge</td> <td>Estimated</td> <td>3 hours</td> <td>EC50</td> <td>>1,000 mg/l</td>	Acrylate oligomer	41637-38-1	Activated sludge	Estimated	3 hours	EC50	>1,000 mg/l
Acrylate oligomer41637-38-1Rainbow troutEstimated96 hoursNo tox obs at Int of water sol>100 mg/lAcrylate oligomer41637-38-1Green algaeEstimated72 hoursNo tox obs at Int of water sol>100 mg/lAcrylate oligomer9010-81-5N/AData not available or insufficient for classificationN/AN/AN/AAcrylonitrile- Butadiene Polymer9010-81-5N/AData not available or insufficient for classificationN/AN/AN/ADimethylbenzyl hydroperxide80-15-9BacteriaExperimental18 hoursEC100.103 mg/lDimethylbenzyl hydroperxide80-15-9Green algaeExperimental72 hoursEC503.1 mg/lDimethylbenzyl hydroperxide80-15-9Rainbow troutExperimental96 hoursLC503.9 mg/lDimethylbenzyl hydroperxide80-15-9Green algaeExperimental48 hoursEC5018.84 mg/lDimethylbenzyl hydroperxide6reen algaeExperimental72 hoursNOEC1 mg/l2,2'- 	Acrylate oligomer	41637-38-1	Green algae	Estimated	72 hours	No tox obs at lmt	>100 mg/l
Acrylate oligomer41637-38-1Rainbow troutEstimated96 hoursNo tox obs at lm>100 mg/lAcrylate oligomer41637-38-1Green algaeEstimated72 hoursNo tox obs at lm>100 mg/lAcrylate oligomer9010-81-5N/AData not available or insufficient for classificationN/AN/AN/AButadiene Polymer80-15-9BacteriaExperimental18 hoursEC100.103 mg/lDimethylbenzyl hydroperoxide80-15-9Green algaeExperimental72 hoursEC503.1 mg/lDimethylbenzyl hydroperoxide80-15-9Green algaeExperimental96 hoursLC503.9 mg/lMortoperoxide a, α - a, α 80-15-9Rainbow troutExperimental96 hoursLC503.9 mg/lMydroperoxide a, α - Dimethylbenzyl hydroperoxide80-15-9Water fleaExperimental72 hoursEC5018.84 mg/lDimethylbenzyl hydroperoxide96 hoursLC5019.9 mg/l19.47.119.47.119.47.119.47.119.47.119.47.119.47.119.47.119.47.119.47.119.47.119.47.119.47.119.41.119.41.2						of water sol	
Acrylate oligomer41637-38-1Green algaeEstimated72 hoursNo tox obs at lm of water sol>100 mg/lAcrylonitrile- Butadicne Polymer9010-81-5N/AData not available or insufficient for classificationN/AN/AN/A $a,a_{,a}$ 80-15-9BacteriaExperimental18 hoursEC100.103 mg/l $a,a_{,a}$ 80-15-9Green algaeExperimental72 hoursEC503.1 mg/lDimethylbenzyl hydroperoxide80-15-9Rainbow troutExperimental96 hoursLC503.9 mg/lDimethylbenzyl hydroperoxide80-15-9Rainbow troutExperimental48 hoursEC5018.84 mg/lDimethylbenzyl hydroperoxide80-15-9Green algaeExperimental48 hoursEC5018.84 mg/lDimethylbenzyl hydroperoxide80-15-9Green algaeExperimental72 hoursNOEC1 mg/lNydroperoxide a, a_80-15-9Green algaeExperimental72 hoursNOEC1 mg/lNydroperoxide a, a_80-15-9Green algaeExperimental72 hoursNOEC1 mg/lNydroperoxide 2,2'-119-47-1Green algaeExperimental72 hoursEC50>100 mg/lZ,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1MedraEndpoint not reached84 hoursEC50>10,000 mg/lZ,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1MedaaExperimental3 hoursEC50>100 mg/lZ,	Acrylate oligomer	41637-38-1	Rainbow trout	Estimated	96 hours	No tox obs at lmt	>100 mg/l
Acrylate oligomer41637-38-1Green algaeEstimated72 hoursNo tox obs at Int of water sol>100 mg/lAcrylonitrile- Butadine Polymer9010-81-5N/AData not available or insufficient for classificationN/AN/AN/A a,a 80-15-9BacteriaExperimental18 hoursEC100.103 mg/lhydroperoxidea,a-80-15-9Green algaeExperimental72 hoursEC503.1 mg/lhydroperoxidea,a-80-15-9Green algaeExperimental96 hoursLC503.9 mg/lhydroperoxidea,a-80-15-9Rainbow troutExperimental96 hoursLC5018.84 mg/lhydroperoxidea,a-80-15-9Green algaeExperimental48 hoursEC5018.84 mg/lhydroperoxide119-47-1Green algaeExperimental72 hoursNOEC1 mg/lhydroperoxide119-47-1Green algaeExperimental72 hoursNOEC1 mg/l2,2'- (etri-butyl-p-cresol]119-47-1Green algaeEndpoint not reached72 hoursEC50>100 mg/l2,2'- (etri-butyl-p-cresol]119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- (etri-butyl-p-cresol]119-47-1Green algaeExperimental reached3 hoursEC50>10 mg/l2,2'- (etri-butyl-p-cresol]119-47-1Green algaeExperimental reached96 hoursNo tox obs at lmt of water sol						of water sol	
Acrylonitrile Butadiene Polymer010-81-5 0010-81-5N/AData not available or insufficient for classificationN/AN/AN/AButadiene Polymer80-15-9 Dimethylbenzyl hydroperoxideBacteriaExperimental18 hoursEC100.103 mg/l a, a a, a - a, a - Dimethylbenzyl hydroperoxide80-15-9 Rainbow troutGreen algaeExperimental Experimental72 hoursEC503.1 mg/lDimethylbenzyl hydroperoxide80-15-9 Rainbow troutRainbow troutExperimental Experimental96 hoursLC503.9 mg/lDimethylbenzyl hydroperoxide80-15-9 Rainbow troutWater flea ExperimentalExperimental P hours72 hoursNOEC1 mg/lDimethylbenzyl hydroperoxide80-15-9 RecenselGreen algaeExperimental Experimental72 hoursNOEC1 mg/l2,2'- 2,2'-119-47-1 Methylenebis[6- tert-butyl-p-cresol]Green algaeExperimental reached72 hoursEC50>100 mg/l2,2'- 2,2'-119-47-1 Methylenebis[6- tert-butyl-p-cresol]119-47-1 Methylenebis[6- tert-butyl-p-cresol]48 hoursEC50>100 mg/l2,2'- 2,2'-119-47-1 Methylenebis[6- tert-butyl-p-cresol]Fereimental P hours3 hoursEC50>100 mg/l2,2'- 2,2'-119-47-1 Methylenebis[6- tert-butyl-p-cresol]Indexa Experimental P hours3 hoursEC50>100 mg/l2,2'- 2,2'-119-47-1 Methylenebis[6- tert-butyl-p-cresol]Indexa Experim	Acrylate oligomer	41637-38-1	Green algae	Estimated	72 hours	No tox obs at lmt	>100 mg/l
Acrylonitrile Butadiene Polymer9010-81-5 enderNA or insufficient for classificationNA or insufficient for classificationNA is in the insufficient for classificationa.a. a.a. a.a. by or provide80-15-9 Boren algaeGreen algaeExperimental Experimental96 hoursLC501 mg/la.a. a.a. a.a. a.a. classification1 mg/l1 mg/l1 mg/l1 mg/lby or provide 2.2'- Methylenebis[6- tert-butyl-peresol]1 mg/l2 hoursNOEC1 mg/lby or provide 						of water sol	
Butlatione Polymeror insufficient for classificationor insufficient for classificationor insufficient for classification $a.a.$ $b.a.$ $b.a.$ $b.a.$ $b.a.$ $b.a.$ $b.a.$ $b.a.$ Bolts-9 $b.a.$ $b.a.$ $b.a.$ $b.a.$ Rainbow trout $b.a.$ $b.a.$ $b.a.$ $b.a.$ Experimental $b.a.$ 96 hours $b.a.$ LC50 $b.a.$ $b.a.$ 3.9 mg/l $b.a.$ bimethylbenzyl hydroperoxide $a.a.$ $b.a.$ Bolts-9 $b.a.$ Green algae $b.a.$ Experimental $b.a.$ 48 hours $b.a.$ EC5018.84 mg/lbimethylbenzyl hydroperoxide $b.a.$ Green algae $b.a.$ Experimental $b.a.$ 72 hours $b.a.$ NOEC $b.a.$ 1 mg/lbimethylbenebis[6- tert-butyl-p-cresol]Green algae $c.a.$ Endpoint not reached72 hours $b.a.$ EC50>100 mg/lc.2.2- $c.2.2-$ 119-47-1 $c.1.2-10$ Methylane bis $c.a.$ Endpoint not reached <t< td=""><td>Acrylonitrile-</td><td>9010-81-5</td><td>N/A</td><td>Data not available</td><td>N/A</td><td>N/A</td><td>N/A</td></t<>	Acrylonitrile-	9010-81-5	N/A	Data not available	N/A	N/A	N/A
a.a.80-15-9BacteriaExperimental18 hoursEC100.103 mg/lDimethylbenzyl hydroperoxideRoGreen algaeExperimental72 hoursEC503.1 mg/lDimethylbenzyl hydroperoxideRainbow troutExperimental96 hoursLC503.9 mg/lDimethylbenzyl hydroperoxide80-15-9Rainbow troutExperimental96 hoursLC5018.84 mg/lDimethylbenzyl hydroperoxide80-15-9Water fleaExperimental48 hoursEC5018.84 mg/lDimethylbenzyl hydroperoxideGreen algaeExperimental72 hoursNOEC1 mg/lQ.a. a.a.80-15-9Green algaeExperimental72 hoursNOEC1 mg/lJimethylbenzyl hydroperoxideI19-47-1Green algaeEndpoint not reached72 hoursEC50>100 mg/lZ.2'- Lett-butyl-p-cresolI19-47-1Water fleaEndpoint not reached72 hoursEC50>100 mg/lZ.2'- Lett-butyl-p-cresolI19-47-1MedakaExperimental3 hoursEC50>100 mg/lZ.2'- Lett-butyl-p-cresolI19-47-1Green algaeExperimental72 hoursNOEC1.3 mg/lZ.2'- Lett-butyl-p-cresolI19-47-1Green algaeExperimental3 hoursEC50>100 mg/lZ.2'- Lett-butyl-p-cresolI19-47-1Green algaeExperimental72 hoursNOEC1.3 mg/lZ.2'- Lett-butyl-p-cresolI19-47-1Green algaeExperimental	Butadiene Polymer			or insufficient for			
a,a a,a a,a Dimethylbenzyl hydroperoxide80-15-9 a,a Green algae a,a a,a Experimental a,a a,a 18 noursEC100.103 mg/l $bindethylbenzylhydroperoxidea_{1}a_{2}a_{2}b_{1}a_{2}a_{2}b_{2}a_{2}a_{2}a_{1}a_{2}b_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a$		00.15.0		classification	10.1	FC10	0.102 //
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	a,a-	80-15-9	Bacteria	Experimental	18 nours	ECIO	0.103 mg/1
$ \begin{array}{ c c c c c c c } \mbox{Inder of algae} & \mbox{Inder operation} & $	Dimetnyibenzyi						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	nyuroperoxide	80.15.0	Graan algaa	Experimental	72 hours	EC50	2 1 mg/l
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	u,u- Dimethylbenzyl	80-13-9	Gitten algae	Experimental	72 110015	100	5.1 mg/1
Superscription dec a,a Dimethylbenzyl hydroperoxideRainbow troutExperimental 	hydroneroxide						
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	a a-	80-15-9	Rainbow trout	Experimental	96 hours	LC50	3.9 mg/l
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dimethylbenzyl	00 15 9	Runbow from	Experimental	50 110013	Leso	5.5 mg/1
a,a^- Dimethylbenzyl hydroperoxide80-15-9Water fleaExperimental48 hoursEC5018.84 mg/l a,a^- Dimethylbenzyl hydroperoxide80-15-9Green algaeExperimental72 hoursNOEC1 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeEndpoint not reached72 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Water fleaEndpoint not reached48 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Water fleaEndpoint not reached3 hoursEC50>10,000 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1MedakaExperimental3 hoursEC50>10,000 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]Green algaeExperimental <td>hydroperoxide</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	hydroperoxide						
Dimethylbenzyl hydroperoxide80-15-9Green algaeExperimental72 hoursNOEC1 mg/lDimethylbenzyl hydroperoxide119-47-1Green algaeEndpoint not reached72 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Water fleaEndpoint not reached72 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Water fleaEndpoint not reached8 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Activated sludgeExperimental3 hoursEC50>10,000 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (2,2'- (119-47-1)Integral algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (2,2'- (tert-butyl-p-cresol]Integral algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (tert-butyl-p-cresol]Integral algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (tert-butyl-p-cresol]Integral algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (tert-butyl-p-cresol]Integral algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (tert-butyl-p-cresol]Integral algaeExperimental </td <td>α,α-</td> <td>80-15-9</td> <td>Water flea</td> <td>Experimental</td> <td>48 hours</td> <td>EC50</td> <td>18.84 mg/l</td>	α,α-	80-15-9	Water flea	Experimental	48 hours	EC50	18.84 mg/l
hydroperoxideeeeee a,a - Dimethylbenzyl hydroperoxide80-15-9Green algaeExperimental72 hoursNOEC1 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeEndpoint not reached72 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Water fleaEndpoint not reached48 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Activated sludgeExperimental3 hoursEC50>10,000 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Activated sludgeExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]98-82-8Activated sludgeExperimental72 hour	Dimethylbenzyl			r · · ···			
α, α - Dimethylbenzyl hydroperoxide80-15-9Green algaeExperimental reached72 hoursNOEC1 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeEndpoint not reached72 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Water fleaEndpoint not reached48 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Activated sludgeExperimental3 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Activated sludgeExperimental3 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental3 hours>0EC1.3 mg/l2,2'- (2,2'- (2,2'- (2,2'- (2,2'- (2,2'- (2,2'- (2,2'- (2,2'- (2,2'- (2,2'- (2,2'- (2,2'- (2,2'-Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (2,2'- (2,2'- (2,2'- (2,2'-119-47-1Green algaeExperimental3 hoursEC10>2,000 mg/l2,2'- (2,2'- (2,2'-119-47-1Green algaeExperimental3 hoursEC10>2,000 mg/l <td>hydroperoxide</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	hydroperoxide						
Dimethylbenzyl hydroperoxideImage: Second S	α,α-	80-15-9	Green algae	Experimental	72 hours	NOEC	1 mg/l
hydroperoxideImage: Construct of the second sec	Dimethylbenzyl		-	-			_
2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeEndpoint not reached72 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Water fleaEndpoint not reached48 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Activated sludgeExperimental Experimental3 hoursEC50>10,000 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1MedakaExperimental Experimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Green algaeExperimental Experimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- Lert-butyl-p-cresol]119-47-1Green algaeExperimental Experimental92 hoursNOEC1.3 mg/l2,2'- Lert-butyl-p-cresol]119-47-1Green algaeExperimental Experimental72 hoursNOEC1.3 mg/l2,2'- Lert-butyl-p-cresol]119-47-1Green algaeExperimental Experimental3 hoursEC10>2,000 mg/l2,2'- Lert-butyl-p-cresol]98-82-8Activated sludgeExperimental Experimental3 hoursEC10>2,000 mg/l	hydroperoxide						
Methylenebis[6- tert-butyl-p-cresol]reachedreachedRed2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Water fleaEndpoint not reached48 hoursEC50>100 mg/l2,2'- (2,2'- tert-butyl-p-cresol]119-47-1Activated sludgeExperimental3 hoursEC50>10,000 mg/l2,2'- (2,2'- tert-butyl-p-cresol]119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- (2,2'- tert-butyl-p-cresol]119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- (2,2'- (2,2'-)119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (2,2'-)119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (2,2'-)119-47-1Green algaeExperimental72 hoursNOEC2.000 mg/l2,2'- (2,2'-)19-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (2,2'-)19-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l	2,2'-	119-47-1	Green algae	Endpoint not	72 hours	EC50	>100 mg/l
tert-butyl-p-cresolwater fleaEndpoint not reached48 hoursEC50>100 mg/l2,2'- (tert-butyl-p-cresol)119-47-1Activated sludgeExperimental3 hoursEC50>10,000 mg/l2,2'- (tert-butyl-p-cresol)119-47-1Activated sludgeExperimental9 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- (tert-butyl-p-cresol)119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- (tert-butyl-p-cresol)119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- (tert-butyl-p-cresol)119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (tert-butyl-p-cresol)119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (tert-butyl-p-cresol)19-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (tert-butyl-p-cresol)19-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (tert-butyl-p-cresol)119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (tert-butyl-p-cresol)98-82-8Activated sludgeExperimental72 hoursEC10>2,000 mg/l	Methylenebis[6-			reached			
2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Water fleaEndpoint not reached48 hoursEC50>100 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1Activated sludgeExperimental3 hoursEC50>10,000 mg/l2,2'- (2,2'-119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- (ert-butyl-p-cresol]119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- (ert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (ert-butyl-p-cresol]119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (ert-butyl-p-cresol]19-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (ert-butyl-p-cresol]19-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- (ert-butyl-p-cresol]98-82-8Activated sludgeExperimental3 hoursEC10>2,000 mg/l	tert-butyl-p-cresol				10.1	200	
Methylenebis[6- tert-butyl-p-cresol]Image: Image for the standard stress of the stres	2,2'-	119-47-1	Water flea	Endpoint not	48 hours	EC50	>100 mg/l
Introduct-p-cresolIntroductionIntroductionIntroduction2,2'-119-47-1Activated sludgeExperimental3 hoursEC50>10,000 mg/l2,2'-119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'-119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'-119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'-119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/lCumene98-82-8Activated sludgeExperimental3 hoursEC10>2,000 mg/lCumene98-82-8Green algaeExperimental72 hoursEC502.6 mg/l	Nietnylenebis[6-			reached			
2,2- Methylenebis[6- tert-butyl-p-cresol]Activated studgeExperimental3 hoursEC 50>10,000 hig/l2,2'- Methylenebis[6- tert-butyl-p-cresol]119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'- (2,2'-119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]Green algaeExperimental3 hoursEC10>2,000 mg/lCumene98-82-8Green algaeExperimental72 hoursEC502.6 mg/l	2 2	110 47 1	A ativatad aludaa	Even onim on tol	2 hours	EC50	>10.000 mg/l
Interlytup-cresolMedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'-119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'-119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'-119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/lMethylenebis[6- tert-butyl-p-cresol]Activated sludgeExperimental3 hoursEC10>2,000 mg/lCumene98-82-8Green algaeExperimental72 hoursEC502.6 mg/l	^{2,2} - Methylepebis[6.	117-4/-1	Activated studge	Experimental	5 110015	EC30	- 10,000 mg/1
2,2'-119-47-1MedakaExperimental96 hoursNo tox obs at lmt of water sol>100 mg/l2,2'-119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/l2,2'-119-47-1Green algaeExperimental72 hoursNOEC1.3 mg/lMethylenebis[6- tert-butyl-p-cresol]Activated sludgeExperimental3 hoursEC10>2,000 mg/lCumene98-82-8Green algaeExperimental72 hoursEC502.6 mg/l	tert-hutyl-n-cresoll						1
Activated sludgeExperimental70 hoursNOEC1.3 mg/l2,2'- Methylenebis[6- tert-butyl-p-cresol]I19-47-1Green algaeExperimental72 hoursNOEC1.3 mg/lCumene98-82-8Activated sludgeExperimental3 hoursEC10>2,000 mg/lCumene98-82-8Green algaeExperimental72 hoursEC10>2,000 mg/l	2.2'-	119-47-1	Medaka	Experimental	96 hours	No tox obs at lmt	>100 mg/l
tert-butyl-p-cresol] Green algae Experimental 72 hours NOEC 1.3 mg/l 2,2'- 119-47-1 Green algae Experimental 72 hours NOEC 1.3 mg/l Methylenebis[6- tert-butyl-p-cresol] Cumene 98-82-8 Activated sludge Experimental 3 hours EC10 >2,000 mg/l Cumene 98-82-8 Green algae Experimental 72 hours EC50 2.6 mg/l	Methylenebis[6-				55 110415	of water sol	
2,2'- 119-47-1 Green algae Experimental 72 hours NOEC 1.3 mg/l Methylenebis[6- tert-butyl-p-cresol] Activated sludge Experimental 3 hours EC10 >2,000 mg/l Cumene 98-82-8 Green algae Experimental 72 hours EC50 2.6 mg/l	tert-butyl-p-cresoll						
Methylenebis[6- tert-butyl-p-cresol] Press Press Press Cumene 98-82-8 Activated sludge Experimental 3 hours EC10 >2,000 mg/l Cumene 98-82-8 Green algae Experimental 72 hours EC50 2.6 mg/l	2,2'-	119-47-1	Green algae	Experimental	72 hours	NOEC	1.3 mg/l
tert-butyl-p-cresol] L L Cumene 98-82-8 Activated sludge Experimental 3 hours EC10 >2,000 mg/l Cumene 98-82-8 Green algae Experimental 72 hours EC50 2.6 mg/l	Methylenebis[6-		0	1			
Cumene98-82-8Activated sludgeExperimental3 hoursEC10>2,000 mg/lCumene98-82-8Green algaeExperimental72 hoursEC502.6 mg/l	tert-butyl-p-cresol]						
Cumene 98-82-8 Green algae Experimental 72 hours EC50 2.6 mg/l	Cumene	98-82-8	Activated sludge	Experimental	3 hours	EC10	>2,000 mg/l
	Cumene	98-82-8	Green algae	Experimental	72 hours	EC50	2.6 mg/l

3MTM Scotch-WeldTM Low Odour Acrylic Adhesive DP810 Tan and Low Odour Acrylic Adhesive 810 Tan, Part A

Cumene	98-82-8	Mysid Shrimp	Experimental	96 hours	EC50	1.2 mg/l
Cumene	98-82-8	Rainbow trout	Experimental	96 hours	LC50	2.7 mg/l
Cumene	98-82-8	Water flea	Experimental	48 hours	EC50	2.14 mg/l
Cumene	98-82-8	Green algae	Experimental	72 hours	NOEC	0.22 mg/l
Cumene	98-82-8	Water flea	Experimental	21 days	NOEC	0.35 mg/l

12.2. Persistence and degradability

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Phenoxyethyl Methacrylate	10595-06-9	Analogous Compound Biodegradation	28 days	BOD	22.3 %BOD/ThOD	OECD 301D - Closed bottle test
Phenoxyethyl Methacrylate	10595-06-9	Experimental Hydrolysis		Hydrolytic half-life (pH 7)	1 years (t 1/2)	OECD 111 Hydrolysis func of pH
2-Hydroxyethyl Methacrylate	868-77-9	Experimental Biodegradation	28 days	BOD	84 %BOD/COD	OECD 301D - Closed bottle test
2-Hydroxyethyl Methacrylate	868-77-9	Experimental Hydrolysis		Hydrolytic half-life basic pH	10.9 days (t 1/2)	OECD 111 Hydrolysis func of pH
Hydroxypropyl Methacrylate	27813-02-1	Experimental Biodegradation	28 days	BOD	81 %BOD/ThOD	OECD 301C - MITI test (I)
Acrylate oligomer	41637-38-1	Experimental Biodegradation	28 days	BOD	24 %BOD/ThOD	OECD 301D - Closed bottle test
Acrylonitrile- Butadiene Polymer	9010-81-5	Data not available- insufficient	N/A	N/A	N/A	N/A
α,α- Dimethylbenzyl hydroperoxide	80-15-9	Experimental Biodegradation	28 days	BOD	0 %BOD/ThOD	OECD 301C - MITI test (I)
2,2'- Methylenebis[6- tert-butyl-p-cresol]	119-47-1	Experimental Biodegradation	28 days	BOD	0 %BOD/ThOD	OECD 301C - MITI test (I)
Cumene	98-82-8	Experimental Biodegradation	14 days	BOD	33 %BOD/ThOD	OECD 301C - MITI test (I)
Cumene	98-82-8	Experimental Photolysis		Photolytic half-life (in air)	4.5 days (t 1/2)	

12.3 : Bioaccumulative potential

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Phenoxyethyl Methacrylate	10595-06-9	Modeled Bioconcentration		Bioaccumulation factor	5.8	Catalogic™
Phenoxyethyl Methacrylate	10595-06-9	Experimental Bioconcentration		Log Kow	3.137	OECD 117 log Kow HPLC method
2-Hydroxyethyl Methacrylate	868-77-9	Experimental Bioconcentration		Log Kow	0.42	OECD 107 log Kow shke flsk mtd
Hydroxypropyl Methacrylate	27813-02-1	Experimental Bioconcentration		Log Kow	0.97	EC A.8 Partition Coefficient
Acrylate oligomer	41637-38-1	Estimated Bioconcentration		Bioaccumulation factor	6.6	
Acrylate oligomer	41637-38-1	Experimental Bioconcentration		Log Kow	≥4.66	OECD 117 log Kow HPLC method
Acrylonitrile- Butadiene Polymer	9010-81-5	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
α,α- Dimethylbenzyl hydroperoxide	80-15-9	Experimental Bioconcentration		Log Kow	1.82	
2,2'- Methylenebis[6- tert-butyl-p-cresol]	119-47-1	Experimental BCF - Fish	60 days	Bioaccumulation factor	840	OECD305-Bioconcentration
Cumene	98-82-8	Modeled Bioconcentration		Bioaccumulation factor	140	Catalogic™

Cumene 98-82-8	Experimental Bioconcentration	Log Kow 3.55	OECD 107 log Kow shke flsk mtd
----------------	----------------------------------	--------------	-----------------------------------

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1. Disposal methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of completely cured (or polymerized) material in a permitted industrial waste facility. As a disposal alternative, incinerate uncured product in a permitted waste incineration facility. Proper destruction may require the use of additional fuel during incineration processes.

SECTION 14: Transport Information

Australian Dangerous Goods Code (ADG) - Road/Rail Transport UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. , (Acrylate Monomer, Cumene Hydroperoxide) Class/Division: 9 Sub Risk: Not applicable. Packing Group: III Special Instructions: Not restricted, environmentally hazardous substance exception. Hazchem Code: •3Z IERG: 47

International Air Transport Association (IATA) - Air Transport UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. , (Acrylate Monomer, Cumene Hydroperoxide) Class/Division: 9 Sub Risk: Not applicable. Packing Group: III Special Instructions: Not restricted, as per Special Provision A197, environmentally hazardous substance exception.

International Maritime Dangerous Goods Code (IMDG)- Marine Transport UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. , (Acrylate Monomer, Cumene Hydroperoxide) Class/Division: 9 Sub Risk: Not applicable. Packing Group: III Marine Pollutant: Acrylate Monomer, Cumene hydroperoxide Special Instructions: Not restricted, as per IMDG code 2.10.2.7, marine pollutant exception.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Australian Inventory Status:

All components of this product are listed on or exempt from the Australian Inventory of Industrial Chemicals (AIIC). Conditions may apply prior to introduction for direct importers of this product, Please contact 3M Australia on 136 136 for further details.

Poison Schedule: This product is intended for Industrial or Professional Use only and therefore is not packaged and labelled in accordance with the requirements of the Standard for the Uniform Scheduling of Medicines and Poisons.

SECTION 16: Other information

Revision information:

Update to Section 14, Transport information.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Safety Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

Greenguard ® is a United States based program. The 'Low VOC' reference related to United States Federal and State regulations exemptions for some solvents.

3M Australia SDSs are available at www.3m.com.au

Safety Data Sheet

Copyright,2023, 3M Company.All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document group:	08-6239-1	Version number:	7.01
Issue Date:	25/01/2023	Supersedes date:	05/09/2021

This Safety Data Sheet has been prepared in accordance with the Preparation of Safety Data Sheets for Hazardous Chemicals Code of Practice (Safe Work Australia, December 2011)

SECTION 1: Identification

1.1. Product identifier

3M[™] Scotch-Weld[™] Low Odour Acrylic Adhesive DP810 Tan and Low Odour Acrylic Adhesive 810 Tan, Part B

1.2. Recommended use and restrictions on use

Recommended use

Structural adhesive.

For Industrial or Professional use only.

1.3. Supplier's details

Address:	3M Australia - Building A, 1 Rivett Road, North Ryde NSW 2113
Telephone:	136 136
E Mail:	productinfo.au@mmm.com
Website:	www.3m.com.au

1.4. Emergency telephone number

EMERGENCY: 1800 097 146 (Australia only)

SECTION 2: Hazard identification

This product is classified as a hazardous chemical according to the Model Work Health and Safety Regulations, 2011, in accordance with applicable State and Territory legislation.

Refer to Section 14 of this Safety Data Sheets for product Dangerous Goods Classification.

2.1. Classification of the substance or mixture

Skin Corrosion/Irritation: Category 2. Serious Eye Damage/Irritation: Category 1. Skin Sensitizer: Category 1.

2.2. Label elements

The label elements below were prepared in accordance with the Code of Practice on Preparation of Safety Data Sheets for Hazardous Chemicals (Safe Work Australia, December 2011). This information may be different from the actual product label.

Signal word

Danger

Symbols

Corrosion |Exclamation mark |

Pictograms

Hazard statements

H315	Causes skin irritation.
H318	Causes serious eye damage.
H317	May cause an allergic skin reaction.

Precautionary statements

Prevention:

P261	Avoid breathing dust/fume/gas/mist/vapours/spray.
P264	Wash thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace.
P280B	Wear protective gloves and eye/face protection.

Response:

Disposal: P501	Dispose of contents/container in accordance with applicable
P362 + P364	Take off contaminated clothing and wash it before reuse.
P333 + P313	If skin irritation or rash occurs: Get medical advice/attention.
P310	Immediately call a POISON CENTRE or doctor/physician.
	lenses, if present and easy to do. Continue rinsing.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact
P302 + P352	IF ON SKIN: Wash with plenty of soap and water.

local/regional/national/international regulations.

2.3. Other assigned/identified product hazards

None known.

2.4. Other hazards which do not result in classification

May be harmful if swallowed. Toxic to aquatic life with long lasting effects.

SECTION 3: Composition/information on ingredients

This material is a mixture.

Ingredient	CAS Nbr	% by Weight
Phenoxyethyl Methacrylate	10595-06-9	10 - 40
2-Hydroxyethyl Methacrylate	868-77-9	10 - 30
Hydroxyethyl Methacrylate	27813-02-1	10 - 30
Acrylate oligomer	41637-38-1	5 - 20
Acrylonitrile-Butadiene Polymer	9010-81-5	5 - 20

2-Hydroxyethyl Methacrylate Phosphate	52628-03-2	< 4
4-Methoxyphenol	150-76-5	< 1
Phenothiazine	92-84-2	<1

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

Skin contact

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

Eye contact

Immediately flush with large amounts of water for at least 15 minutes. Remove contact lenses if easy to do. Continue rinsing. Immediately get medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

Allergic skin reaction (redness, swelling, blistering, and itching). Serious damage to the eyes (corneal cloudiness, severe pain, tearing, ulcerations, and significantly impaired or loss of vision).

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

Closed containers exposed to heat from fire may build pressure and explode.

Hazardous Decomposition or By-Products

<u>Substance</u>	<u>Condition</u>
Carbon monoxide.	During combustion.
Carbon dioxide.	During combustion.
Oxides of nitrogen.	During combustion.
Toxic vapour, gas, particulate.	During combustion.

5.3. Special protective actions for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

Hazchem Code: •3Z

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment. For larger spills, cover drains and build dykes to prevent entry into sewer systems or bodies of water.

6.3. Methods and material for containment and cleaning up

Contain spill. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue with an appropriate solvent selected by a qualified and authorised person. Ventilate the area with fresh air. Read and follow safety precautions on the solvent label and Safety Data Sheet. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

For industrial/occupational use only. Not for consumer sale or use. Avoid breathing dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Keep away from reactive metals (eg. Aluminum, zinc etc.) to avoid the formation of hydrogen gas that could create an explosion hazard.

7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from amines.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	CAS Nbr	Agency	Limit type	Additional comments
4-Methoxyphenol	150-76-5	ACGIH	TWA:5 mg/m3	
4-Methoxyphenol	150-76-5	Australia OELs	TWA(8 hours):5 mg/m3	
Phenothiazine	92-84-2	ACGIH	TWA:5 mg/m3	Danger of cutaneous
				absorption
Phenothiazine	92-84-2	Australia OELs	TWA(8 hours):5 mg/m3	SKIN

ACGIH : American Conference of Governmental Industrial Hygienists

AIHA : American Industrial Hygiene Association

Australia OELs : Australia. Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment CMRG : Chemical Manufacturer's Recommended Guidelines

TWA: Time-Weighted-Average

STEL: Short Term Exposure Limit

CEIL: Ceiling

Sen: Sensitiser

Sk: Absorption through the skin may be a significant source of exposure.

8.2. Exposure controls

8.2.1. Engineering controls

Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapours/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended: Full face shield. Indirect vented goggles.

Select and use eye protection in accordance with AS/NZS 1336. Eye protection should comply with the performance specifications of AS/NZS 1337.

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing. Note: Nitrile gloves may be worn over polymer laminate gloves to improve dexterity. Gloves made from the following material(s) are recommended: Polymer laminate

Select and use gloves according to AS/NZ 2161.

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapours and particulates

For questions about suitability for a specific application, consult with your respirator manufacturer. Select and use respirators according to AS/NZS 1715. Respirators should comply with AS/NZS 1716 performance specifications. For information about respirators, call 3M on 1800 024 464.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state	Liquid.
Specific Physical Form:	Paste
Colour	Green
Odour	Methacrylate
Odour threshold	No data available.
рН	Not applicable.
Melting point/Freezing point	Not applicable.
Boiling point/Initial boiling point/Boiling range	> 93 °C
Flash point	> 93.3 °C [<i>Test Method</i> :Closed Cup]
Evaporation rate	No data available.
Flammability (solid, gas)	Not applicable.
Flammable Limits(LEL)	No data available.
Flammable Limits(UEL)	No data available.
Vapour pressure	<=13.3 Pa
Vapor Density and/or Relative Vapor Density	No data available.
Density	1.07 g/ml
Relative density	1.07 [<i>Ref Std</i> :WATER=1]
Water solubility	Slight (less than 10%)
Solubility- non-water	No data available.

Partition coefficient: n-octanol/water	No data available.	
Autoignition temperature	No data available.	
Decomposition temperature	No data available.	
Viscosity/Kinematic Viscosity	20,000 mPa-s	
Volatile organic compounds (VOC)	No data available.	
Percent volatile	No data available.	
VOC less H2O & exempt solvents	3.1 g/l [Details: when used as intended with Part A]	
VOC less H2O & exempt solvents	0.3 % [Details: when used as intended with Part A]	
VOC less H2O & exempt solvents	319 g/l [Test Method:tested per EPA method 24] [Details:as	
	supplied]	
Molecular weight	No data available.	

SECTION 10: Stability and reactivity

10.1 Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

10.2 Chemical stability

Stable.

10.3. Conditions to avoid

Heat.

Sparks and/or flames.

Heat is generated during cure. Do not cure a mass larger than 50 grams in a confined space to prevent a premature exothermic reaction with production of intense heat and smoke.

10.4. Possibility of hazardous reactions

Hazardous polymerisation may occur.

10.5 Incompatible materials Amines. Reducing agents. Reactive metals

10.6 Hazardous decomposition products

<u>Substance</u>

None known.

Condition

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labelling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

Respiratory tract irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose

and throat pain.

Skin contact

Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, dryness, cracking, blistering, and pain. Allergic skin reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching. Photosensitisation: Signs/symptoms may include a sunburn-like reaction such as blistering, redness, swelling, and itching from minor exposure to sunlight.

Eye contact

Corrosive (eye burns): Signs/symptoms may include cloudy appearance of the cornea, chemical burns, severe pain, tearing, ulcerations, significantly impaired vision or complete loss of vision.

Ingestion

May be harmful if swallowed.

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000
			mg/kg
Overall product	Ingestion		No data available; calculated ATE >2,000 -
			=5,000 mg/kg
Phenoxyethyl Methacrylate	Dermal		LD50 estimated to be 2,000 - 5,000 mg/kg
Phenoxyethyl Methacrylate	Ingestion		LD50 estimated to be 2,000 - 5,000 mg/kg
2-Hydroxyethyl Methacrylate	Dermal	Rabbit	LD50 > 5,000 mg/kg
2-Hydroxyethyl Methacrylate	Ingestion	Rat	LD50 5,564 mg/kg
Acrylonitrile-Butadiene Polymer	Dermal		LD50 estimated to be > 5,000 mg/kg
Acrylonitrile-Butadiene Polymer	Ingestion		LD50 estimated to be 2,000 - 5,000 mg/kg
Hydroxyethyl Methacrylate	Dermal	Rabbit	LD50 > 5,000 mg/kg
Hydroxyethyl Methacrylate	Ingestion	Rat	LD50 > 11,200 mg/kg
Acrylate oligomer	Dermal	Rat	LD50 > 2,000 mg/kg
Acrylate oligomer	Ingestion	Rat	LD50 > 2,000 mg/kg
2-Hydroxyethyl Methacrylate	Ingestion	Rat	LD50 > 2,000 mg/kg
Phosphate			
4-Methoxyphenol	Dermal	Rat	LD50 > 2,000 mg/kg
4-Methoxyphenol	Ingestion	Rat	LD50 1,630 mg/kg
Phenothiazine	Dermal	Rat	LD50 > 2,000 mg/kg
Phenothiazine	Ingestion	Rat	LD50 1,370 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Phenoxyethyl Methacrylate	similar compounds	Irritant
2-Hydroxyethyl Methacrylate	Rabbit	Minimal irritation
Acrylonitrile-Butadiene Polymer	Professional judgement	No significant irritation
Hydroxyethyl Methacrylate	Rabbit	Minimal irritation
Acrylate oligomer	In vitro data	No significant irritation
2-Hydroxyethyl Methacrylate Phosphate	Rabbit	Corrosive
4-Methoxyphenol	Rabbit	Mild irritant
Phenothiazine	Rabbit	No significant irritation

Serious Eye Damage/Irritation

Name	Species	Value
Phenoxyethyl Methacrylate	similar compounds	Severe irritant
2-Hydroxyethyl Methacrylate	Rabbit	Moderate irritant
Acrylonitrile-Butadiene Polymer	Professional judgement	No significant irritation
Hydroxyethyl Methacrylate	Rabbit	Moderate irritant
Acrylate oligomer	In vitro data	No significant irritation
2-Hydroxyethyl Methacrylate Phosphate	similar health hazards	Corrosive
4-Methoxyphenol	Rabbit	Severe irritant
Phenothiazine	Rabbit	Mild irritant

Skin Sensitisation

Name	Species	Value
2-Hydroxyethyl Methacrylate	Human and animal	Sensitising
Hydroxyethyl Methacrylate	Human and animal	Sensitising
Acrylate oligomer	Multiple animal species	Not classified
2-Hydroxyethyl Methacrylate Phosphate	Mouse	Sensitising
4-Methoxyphenol	Guinea pig	Sensitising
Phenothiazine	Guinea pig	Sensitising

Photosensitisation

Name	Species	Value
Phenothiazine	Human	Sensitising

Respiratory Sensitisation

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
Phenoxyethyl Methacrylate	In Vitro	Not mutagenic
2-Hydroxyethyl Methacrylate	In vivo	Not mutagenic
2-Hydroxyethyl Methacrylate	In Vitro	Some positive data exist, but the data are not
		sufficient for classification
Hydroxyethyl Methacrylate	In vivo	Not mutagenic
Hydroxyethyl Methacrylate	In Vitro	Some positive data exist, but the data are not
		sufficient for classification
Acrylate oligomer	In Vitro	Not mutagenic
2-Hydroxyethyl Methacrylate Phosphate	In Vitro	Not mutagenic
4-Methoxyphenol	In vivo	Not mutagenic
4-Methoxyphenol	In Vitro	Some positive data exist, but the data are not
		sufficient for classification
Phenothiazine	In Vitro	Not mutagenic
Phenothiazine	In vivo	Not mutagenic

Carcinogenicity

Name	Route	Species	Value
4-Methoxyphenol	Dermal	Multiple animal	Not carcinogenic
		species	
4-Methoxyphenol	Ingestion	Multiple animal	Some positive data exist, but the data
		species	are not sufficient for classification

Reproductive Toxicity

Nama	Route		Species	Test result	Exposure Duration
	Incontion	Value Natalaggifiad for	Det	NOAEI	
2-Hydroxyethyl Mathaamilata	Ingestion	Not classified for	Kal	NOAEL	premating & during
Methacrylate		lemale reproduction		1,000	gestation
				mg/kg/day	
2-Hydroxyethyl	Ingestion	Not classified for	Rat	NOAEL	49 days
Methacrylate		male reproduction		1,000	
				mg/kg/day	
2-Hydroxyethyl	Ingestion	Not classified for	Rat	NOAEL	premating & during
Methacrylate		development		1,000	gestation
				mg/kg/day	
Hydroxyethyl	Ingestion	Not classified for	Rat	NOAEL	premating into
Methacrvlate	0	female reproduction		1.000	lactation
5		1		mg/kg/day	
Hydroxyethyl	Ingestion	Not classified for	Rat	NOAEL	49 days
Methacrylate	mgeotion	male reproduction	1.000	1 000	.,
1.10011001 j 1000		inale reproduction		mg/kg/day	
Hydroxyethyl	Ingestion	Not classified for	Rat	NOAFI	during gestation
Methacrylate	ingestion	development	Rat	1 000	during gestation
wiethaerylate		development		ng/kg/day	
Acrulate aligomer	Ingestion	Not classified for	Pat	NOAEI	premating into
Activiate ofigorifer	ingestion	fomale reproduction	Kat	1 000	lastation
		remaie reproduction		1,000	lactation
A amilata alianman	Incontinu	Not aloggified for	Det		20 Janua
Acrylate oligomer	Ingestion	Not classified for	Kal	NOAEL	28 days
		male reproduction		1,000	
A 1 . 1	T			mg/kg/day	1
Acrylate oligomer	Ingestion	Not classified for	Rat	NOAEL	during gestation
		development		1,000	
				mg/kg/day	
2-Hydroxyethyl	Ingestion	Not classified for	Rat	NOAEL	during gestation
Methacrylate		development		1,000	
Phosphate				mg/kg/day	
4-Methoxyphenol	Ingestion	Not classified for	Rat	NOAEL 300	premating into
		female reproduction		mg/kg/day	lactation
4-Methoxyphenol	Ingestion	Not classified for	Rat	NOAEL 300	28 days
51	U	male reproduction		mg/kg/day	5
4-Methoxyphenol	Ingestion	Not classified for	Rat	NOAEL 200	during gestation
J. J. Price of Price		development		mg/kg/day	
Phenothiazine	Ingestion	Not classified for	Rat	NOAEL 150	during
1 nonotinuzine	ingestion	development	ivat	mg/kg/day	organogenesis
	1	development		ing/kg/uay	organogenesis

Reproductive and/or Developmental Effects

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Hydroxyethyl Methacrylate	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	
2- Hydroxyethyl Methacrylate Phosphate	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	
4- Methoxyphen ol	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for	similar health hazards	NOAEL Not available	

	classification		

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Hydroxyethyl Methacrylate	Inhalation	blood	Not classified	Rat	NOAEL 0.5	21 days
Hydroxyethyl Methacrylate	Ingestion	hematopoietic system heart endocrine system liver immune system nervous system kidney and/or bladder	Not classified	Rat	NOAEL 1,000 mg/kg/day	41 days
Acrylate oligomer	Ingestion	hematopoietic system liver immune system kidney and/or bladder endocrine system eyes	Not classified	Rat	NOAEL 1,000 mg/kg/day	13 weeks
2- Hydroxyethyl Methacrylate Phosphate	Ingestion	hematopoietic system kidney and/or bladder heart liver immune system eyes	Not classified	Rat	NOAEL 300 mg/kg/day	90 days
4- Methoxyphen ol	Ingestion	gastrointestinal tract	Not classified	Rat	LOAEL 300 mg/kg/day	28 days
4- Methoxyphen	Ingestion	liver immune system	Not classified	Rat	NOAEL 300 mg/kg/day	28 days
4- Methoxyphen	Ingestion	kidney and/or bladder	Not classified	Rat	LOAEL 300 mg/kg/day	28 days
4- Methoxyphen ol	Ingestion	heart endocrine system hematopoietic system nervous system respiratory system	Not classified	Rat	NOAEL 300 mg/kg/day	28 days
Phenothiazine	Ingestion	hematopoietic system	May cause damage to organs though prolonged or repeated exposure	Dog	NOAEL 18 mg/kg/day	13 weeks
Phenothiazine	Ingestion	heart endocrine system liver kidney and/or bladder respiratory system	Not classified	Dog	NOAEL 67 mg/kg/day	13 weeks

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Exposure Levels

Refer Section 8.1 Control Parameters of this Safety Data Sheet.

Interactive Effects

Not determined.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labelling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

Acute aquatic hazard:

GHS Acute 2: Toxic to aquatic life.

Chronic aquatic hazard:

GHS Chronic 2: Toxic to aquatic life with long lasting effects.

No product test data available.

Material	CAS Number	Organism	Туре	Exposure	Test endpoint	Test result
Phenoxyethyl Mathaorylata	10595-06-9	Activated sludge	Analogous	3 hours	EC50	177 mg/l
Depervention	10505.06.0	Goldon Orfo	Analogous	06 hours	L C 50	10 mg/l
Methacrylate	10393-00-9	Golden One	Compound	90 nouis	LC50	10 mg/1
Phenoxyethyl	10595-06-9	Green algae	Analogous	96 hours	ErC50	4 4 mg/l
Methacrylate	10090 00 9	of een uigue	Compound	y o nouis	21000	
Phenoxyethyl	10595-06-9	Water flea	Analogous	48 hours	EC50	1.21 mg/l
Methacrylate			Compound			e e
Phenoxyethyl	10595-06-9	Green algae	Analogous	96 hours	ErC10	0.74 mg/l
Methacrylate			Compound			-
2-Hydroxyethyl	868-77-9	Turbot	Analogous	96 hours	LC50	833 mg/l
Methacrylate			Compound			
2-Hydroxyethyl Methacrylate	868-77-9	Fathead minnow	Experimental	96 hours	LC50	227 mg/l
2-Hydroxyethyl	868-77-9	Green algae	Experimental	72 hours	EC50	710 mg/l
Methacrylate		_	-			_
2-Hydroxyethyl	868-77-9	Water flea	Experimental	48 hours	EC50	380 mg/l
Methacrylate						
2-Hydroxyethyl	868-77-9	Green algae	Experimental	72 hours	NOEC	160 mg/l
Methacrylate						
2-Hydroxyethyl Methacrylate	868-77-9	Water flea	Experimental	21 days	NOEC	24.1 mg/l
2-Hydroxyethyl Methacrylate	868-77-9	N/A	Experimental	16 hours	EC0	>3,000 mg/l
2-Hydroxyethyl	868-77-9	N/A	Experimental	18 hours	L D50	<98 mg per kg of bodyweight
Methacrylate	000 // 5	1.0/21	Experimental	10 110013	LD50	soo mg per kg or body weight
Hvdroxvethvl	27813-02-1	Bacteria	Experimental	N/A	EC10	1.140 mg/l
Methacrylate			I			,
Hydroxyethyl	27813-02-1	Golden Orfe	Experimental	48 hours	EC50	493 mg/l
Methacrylate						
Hydroxyethyl	27813-02-1	Green algae	Experimental	72 hours	ErC50	>97.2 mg/l
Methacrylate						
Hydroxyethyl	27813-02-1	Water flea	Experimental	48 hours	EC50	>143 mg/l
Methacrylate						
Hydroxyethyl	27813-02-1	Green algae	Experimental	72 hours	NOEC	97.2 mg/l
Methacrylate						
Hydroxyethyl	27813-02-1	Water flea	Experimental	21 days	NOEC	45.2 mg/l
Methacrylate						

Acrylate oligomer	41637-38-1	Activated sludge	Estimated	3 hours	EC50	>1,000 mg/l
Acrylate oligomer	41637-38-1	Green algae	Estimated	72 hours	No tox obs at lmt of water sol	>100 mg/l
Acrylate oligomer	41637-38-1	Rainbow trout	Estimated	96 hours	No tox obs at lmt of water sol	>100 mg/l
Acrylate oligomer	41637-38-1	Green algae	Estimated	72 hours	No tox obs at lmt of water sol	>100 mg/l
Acrylonitrile- Butadiene Polymer	9010-81-5	N/A	Data not available or insufficient for classification	N/A	N/A	N/A
2-Hydroxyethyl Methacrylate Phosphate	52628-03-2	Green algae	Experimental	72 hours	EC50	>120 mg/l
2-Hydroxyethyl Methacrylate Phosphate	52628-03-2	Rainbow trout	Experimental	96 hours	LC50	>112 mg/l
2-Hydroxyethyl Methacrylate Phosphate	52628-03-2	Water flea	Experimental	48 hours	EC50	68 mg/l
2-Hydroxyethyl Methacrylate Phosphate	52628-03-2	Green algae	Experimental	72 hours	NOEC	30 mg/l
4-Methoxyphenol	150-76-5	Ciliated protozoa	Experimental	40 hours	IC50	171.4 mg/l
4-Methoxyphenol	150-76-5	Green algae	Experimental	72 hours	ErC50	54.7 mg/l
4-Methoxyphenol	150-76-5	Rainbow trout	Experimental	96 hours	LC50	28.5 mg/l
4-Methoxyphenol	150-76-5	Water flea	Experimental	48 hours	EC50	2.2 mg/l
4-Methoxyphenol	150-76-5	Green algae	Experimental	72 hours	NOEC	2.96 mg/l
4-Methoxyphenol	150-76-5	Water flea	Experimental	21 days	NOEC	0.68 mg/l
Phenothiazine	92-84-2	Activated sludge	Experimental	3 hours	IC50	>100 mg/l
Phenothiazine	92-84-2	Ciliated protozoa	Experimental	48 hours	IC50	8 mg/l
Phenothiazine	92-84-2	Green algae	Experimental	72 hours	ErC50	>100 mg/l
Phenothiazine	92-84-2	Rainbow trout	Experimental	96 hours	LC50	0.597 mg/l
Phenothiazine	92-84-2	Water flea	Experimental	48 hours	EC50	0.154 mg/l

12.2. Persistence and degradability

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Phenoxyethyl Methacrylate	10595-06-9	Analogous Compound Biodegradation	28 days	BOD	22.3 %BOD/ThOD	OECD 301D - Closed bottle test
Phenoxyethyl Methacrylate	10595-06-9	Experimental Hydrolysis		Hydrolytic half-life (pH 7)	1 years (t 1/2)	OECD 111 Hydrolysis func of pH
2-Hydroxyethyl Methacrylate	868-77-9	Experimental Biodegradation	28 days	BOD	84 %BOD/COD	OECD 301D - Closed bottle test
2-Hydroxyethyl Methacrylate	868-77-9	Experimental Hydrolysis		Hydrolytic half-life basic pH	10.9 days (t 1/2)	OECD 111 Hydrolysis func of pH
Hydroxyethyl Methacrylate	27813-02-1	Experimental Biodegradation	28 days	BOD	81 %BOD/ThOD	OECD 301C - MITI test (I)
Acrylate oligomer	41637-38-1	Experimental Biodegradation	28 days	BOD	24 %BOD/ThOD	OECD 301D - Closed bottle test
Acrylonitrile- Butadiene Polymer	9010-81-5	Data not available- insufficient	N/A	N/A	N/A	N/A
2-Hydroxyethyl Methacrylate Phosphate	52628-03-2	Experimental Biodegradation	28 days	BOD	93.1 %BOD/ThOD	OECD 301F - Manometric respirometry
4-Methoxyphenol	150-76-5	Experimental Biodegradation - Anaerobic	28 days	Percent degraded	>90 % degraded	
4-Methoxyphenol	150-76-5	Experimental Biodegradation	28 days	BOD	86 %BOD/ThOD	OECD 301C - MITI test (I)
Phenothiazine	92-84-2	Experimental	28 days	BOD	0 %BOD/ThOD	OECD 301D - Closed bottle

Biodegradation	test

12.3 : Bioaccumulative potential

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Phenoxyethyl	10595-06-9	Modeled		Bioaccumulation	5.8	Catalogic [™]
Methacrylate		Bioconcentration		factor		-
Phenoxyethyl	10595-06-9	Experimental		Log Kow	3.137	OECD 117 log Kow HPLC
Methacrylate		Bioconcentration		-		method
2-Hydroxyethyl	868-77-9	Experimental		Log Kow	0.42	OECD 107 log Kow shke
Methacrylate		Bioconcentration				flsk mtd
Hydroxyethyl	27813-02-1	Experimental		Log Kow	0.97	EC A.8 Partition Coefficient
Methacrylate		Bioconcentration				
Acrylate oligomer	41637-38-1	Estimated		Bioaccumulation	6.6	
		Bioconcentration		factor		
Acrylate oligomer	41637-38-1	Experimental		Log Kow	≥4.66	OECD 117 log Kow HPLC
		Bioconcentration				method
Acrylonitrile-	9010-81-5	Data not available	N/A	N/A	N/A	N/A
Butadiene Polymer		or insufficient for				
		classification				
2-Hydroxyethyl	52628-03-2	Experimental		Log Kow	1 - 2.72	OECD 117 log Kow HPLC
Methacrylate		Bioconcentration				method
Phosphate						
4-Methoxyphenol	150-76-5	Experimental		Log Kow	1.58	
		Bioconcentration				
Phenothiazine	92-84-2	Experimental BCF	56 days	Bioaccumulation	660	
		- Fish		factor		
Phenothiazine	92-84-2	Experimental		Log Kow	3.78	OECD 117 log Kow HPLC
		Bioconcentration				method

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1. Disposal methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of completely cured (or polymerized) material in a permitted industrial waste facility. As a disposal alternative, incinerate uncured product in a permitted waste incineration facility. Proper destruction may require the use of additional fuel during incineration processes.

SECTION 14: Transport Information

Australian Dangerous Goods Code (ADG) - Road/Rail Transport UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. , (Phenoxy Ethyl Methacrylate) Class/Division: 9 Sub Risk: Not applicable. Packing Group: III Special Instructions: Australian Dangerous Goods Code: Not subject to this code as per Special Provision AU01 Hazchem Code: •3Z IERG: 47

International Air Transport Association (IATA) - Air Transport

UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S., (Phenoxy Ethyl Methacrylate) Class/Division: 9 Sub Risk: Not applicable. Packing Group: III Special Instructions: Not restricted, as per Special Provision A197, environmentally hazardous substance exception.

International Maritime Dangerous Goods Code (IMDG)- Marine Transport UN No.: UN3082 Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S., (Phenoxy Ethyl Methacrylate) Class/Division: 9 Sub Risk: Not applicable. Packing Group: III Marine Pollutant: Phenoxy Ethyl Methacrylate Special Instructions: Not restricted, as per IMDG code 2.10.2.7, marine pollutant exception.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Australian Inventory Status:

All components of this product are listed on or exempt from the Australian Inventory of Industrial Chemicals (AIIC). Conditions may apply prior to introduction for direct importers of this product, Please contact 3M Australia on 136 136 for further details.

Poison Schedule: This product is intended for Industrial or Professional Use only and therefore is not packaged and labelled in accordance with the requirements of the Standard for the Uniform Scheduling of Medicines and Poisons.

SECTION 16: Other information

Revision information:

Complete document review.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Safety Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

Greenguard ® is a United States based program. The 'Low VOC' reference related to United States Federal and State regulations exemptions for some solvents.

3M Australia SDSs are available at www.3m.com.au