

Safety Data Sheet

Copyright, 2024, 3M Company. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

This Safety Data Sheet has been prepared in accordance with the SS586 Specification for Hazard Communication for Hazardous Chemicals and Dangerous Goods.

Document group: 39-4721-5 Version number: 2.00

Issue Date: 30/08/2024 Supersedes date: 01/03/2023

SECTION 1: Identification

1.1. Product identifier

3MTM DyneonTM Fluoroelastomer FC 2174

1.2. Recommended use and restrictions on use

Recommended use

Fluoroelastomer

1.3. Supplier's details

3M Technologies (S) Pte Ltd, 10 Ang Mo Kio Street 65, Singapore 569059 Address:

Telephone: +65 6450 8888 Website: www.3m.com.sg

1.4. Emergency telephone number

+65 6591 6601 (8.15am - 5.00pm, Monday - Friday)

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture

Serious Eye Damage/Irritation: Category 2. Reproductive Toxicity: Category 1B.

2.2. Label elements

SIGNAL WORD

DANGER!

Symbols

Exclamation mark | Health Hazard |

Pictograms

3MTM DyneonTM Fluoroelastomer FC 2174

HAZARD STATEMENTS

H319 Causes serious eve irritation.

H360 May damage fertility or the unborn child.

PRECAUTIONARY STATEMENTS

Prevention:

P201 Obtain special instructions before use.

P280E Wear protective gloves.

Response:

P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses, if present and easy to do. Continue rinsing.

P308 + P313 IF exposed or concerned: Get medical advice/attention.

2.3. Other hazards

May cause thermal burns. 3M Vapours liberated during processing may be hazardous if inhaled. Eye, nose, throat and lung irritation can occur from such vapours. Acute aquatic env. toxicity class. not applied based on test data This material has been tested for acute aquatic environmental toxicity and the test results do not meet the criteria for classification.

Chronic aquatic env. toxicity class. not applied based on test data

This material has been tested for chronic aquatic environmental toxicity and the test results do not meet the criteria for classification.

SECTION 3: Composition/information on ingredients

This material is a mixture.

Ingredient	CAS Nbr	% by Wt
Vinylidene Fluoride - Hexafluoropropylene	9011-17-0	95 - 99
Polymer		
4,4'-[2,2,2-trifluoro-1-	1478-61-1	< 3
(trifluoromethyl)ethylidene]bis[phenol]		
Bis(4-chlorophenyl) sulphone	80-07-9	0.1 - 3
Benzyltriphenylphosphonium chloride	1100-88-5	< 1

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

Skin contact

Immediately flush skin with large amounts of cold water for at least 15 minutes. DO NOT ATTEMPT TO REMOVE MOLTEN MATERIAL. Cover affected area with a clean dressing. Get immediate medical attention.

Eye contact

Immediately flush eyes with large amounts of water for at least 15 minutes. DO NOT ATTEMPT TO REMOVE MOLTEN MATERIAL. Get immediate medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

No critical symptoms or effects. See Section 11.1, information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

Exposure to extreme heat can give rise to thermal decomposition.

5.3. Special protective actions for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Avoid inhalation of thermal decomposition products. Avoid skin contact with hot material. Store work clothes separately from other clothing, food and tobacco products. Do not handle until all safety precautions have been read and understood. Do not breathe dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. No smoking: Smoking while using this product can result in contamination of the tobacco and/or smoke and lead to the formation of hazardous decomposition products. Use personal protective equipment (eg. gloves, respirators...) as required.

7.2. Conditions for safe storage including any incompatibilities

No special storage requirements.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

No occupational exposure limit values exist for any of the components listed in Section 3 of this Safety Data Sheet.

8.2. Exposure controls

8.2.1. Engineering controls

For those situations where the material might be exposed to extreme overheating due to misuse or equipment failure, use with appropriate local exhaust ventilation sufficient to maintain levels of thermal decomposition products below their exposure guidelines. Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapours/spray. If ventilation is not adequate, use respiratory protection

Page: 3 of 11

equipment. Local exhaust required above 400 C.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Safety glasses with side shields.

Indirect vented goggles.

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing.

Gloves made from the following material(s) are recommended: Nitrile rubber.

If this product is used in a manner that presents a higher potential for exposure (eg. spraying, high splash potential etc.), then use of protective coveralls may be necessary. Select and use body protection to prevent contact based on the results of an Apron – Nitrile

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

For those situations where the material might be exposed to extreme overheating due to misuse or equipment failure, use a positive pressure supplied-air respirator.

Half facepiece or full facepiece air-purifying respirator suitable for organic vapours and particulates

For questions about suitability for a specific application, consult with your respirator manufacturer.

Thermal hazards

Wear heat insulating gloves, indirect vented goggles, and a full face shield when handling hot material to prevent thermal burns.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state	Solid.
Specific Physical Form:	Solid block or slab
Color	Straw, White
Odor	Odorless
Odour threshold	No data available.
pH	Not applicable.
Melting point/Freezing point	Not applicable.
Boiling point/Initial boiling point/Boiling range	Not applicable.
Flash point	No flash point
Evaporation rate	No data available.
Flammability	Not applicable.
Flammable Limits(LEL)	Not applicable.

Flammable Limits(UEL)	Not applicable.	
Vapour pressure	Not applicable.	
Vapor Density and/or Relative Vapor Density	Not applicable.	
Density	1.8 g/cm3	
Relative density	1.8 [Ref Std:WATER=1]	
Water solubility	Negligible	
Solubility- non-water	No data available.	
Partition coefficient: n-octanol/water	No data available.	
Autoignition temperature	Not applicable.	
Decomposition temperature	No data available.	
Kinematic Viscosity	Not applicable.	
Volatile organic compounds (VOC)	No data available.	
Percent volatile	No data available.	
VOC less H2O & exempt solvents	No data available.	
Molecular weight	No data available.	

Particle Characteristics	Not applicable.
--------------------------	-----------------

SECTION 10: Stability and reactivity

10.1 Reactivity

This material is considered to be non reactive under normal use conditions

10.2 Chemical stability

Stable.

10.3 Possibility of hazardous reactions

Hazardous polymerisation will not occur.

10.4 Conditions to avoid

None known.

10.5 Incompatible materials

Aluminium or magnesium powder and high/shear temperature conditions.

10.6 Hazardous decomposition products

<u>Substance</u>	<u>Condition</u>
Carbon monoxide.	At elevated temperatures.
Carbon dioxide.	At elevated temperatures.
Hydrogen Fluoride	At elevated temperatures.
Perfluoroisobutylene (PFIB).	At elevated temperatures.
Oxides of sulphur.	At elevated temperatures.
Toxic vapour, gas, particulate.	At elevated temperatures.

If the product is exposed to extreme conditions of heat from misuse or equipment failure, toxic decomposition products that include hydrogen fluoride and perfluoroisobutylene can occur.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labelling, an ingredient may not be available for exposure, or the data may not be

relevant to the material as a whole.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

Respiratory tract irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain.

During heating:

Polymer fume fever: Sign/symptoms may include chest pain or tightness, shortness of breath, cough, malaise, muscle aches, increased heart rate, fever, chills, sweats, nausea and headache.

Skin contact

During heating: Thermal Burns: Signs/symptoms may include intense pain, redness and swelling, and tissue destruction.

Eve contact

During heating: Thermal Burns: Signs/symptoms may include severe pain, redness and swelling, and tissue destruction. Severe eye irritation: Signs/symptoms may include significant redness, swelling, pain, tearing, cloudy appearance of the cornea, and impaired vision.

Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea. May cause additional health effects (see below).

Additional Health Effects:

Reproductive/Developmental Toxicity:

Contains a chemical or chemicals which can cause birth defects or other reproductive harm.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000 mg/kg
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
Vinylidene Fluoride - Hexafluoropropylene Polymer	Dermal		LD50 estimated to be > 5,000 mg/kg
Vinylidene Fluoride - Hexafluoropropylene Polymer	Ingestion	Rat	LD50 6,000 mg/kg
Bis(4-chlorophenyl) sulphone	Dermal	Professio	LD50 estimated to be 2,000 - 5,000 mg/kg
		nal	
		judgeme	
		nt	
Bis(4-chlorophenyl) sulphone	Ingestion	Rat	LD50 4,810 mg/kg
4,4'-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis[phenol]	Dermal	Rat	LD50 > 2,000 mg/kg
4,4'-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis[phenol]	Ingestion	Rat	LD50 > 2,000 mg/kg
Benzyltriphenylphosphonium chloride	Ingestion	Rat	LD50 >100, <300 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Vinylidene Fluoride - Hexafluoropropylene Polymer	Rabbit	No significant irritation
Bis(4-chlorophenyl) sulphone	Rabbit	Minimal irritation

3MTM DyneonTM Fluoroelastomer FC 2174

4,4'-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis[phenol]	Rabbit	No significant irritation
Benzyltriphenylphosphonium chloride	Rabbit	No significant irritation

Serious Eye Damage/Irritation

Name	Species	Value
Vinylidene Fluoride - Hexafluoropropylene Polymer	Rabbit	Mild irritant
Bis(4-chlorophenyl) sulphone	Rabbit	Severe irritant
4,4'-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis[phenol]	Rabbit	Corrosive
Benzyltriphenylphosphonium chloride	Rabbit	Corrosive

Sensitization:

Skin Sensitisation

Name	Species	Value
Bis(4-chlorophenyl) sulphone	Mouse	Not classified
4,4'-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis[phenol]	Guinea	Not classified
	pig	

Respiratory Sensitisation

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
Bis(4-chlorophenyl) sulphone	In Vitro	Not mutagenic
Bis(4-chlorophenyl) sulphone	In vivo	Some positive data exist, but the data are not sufficient for classification
4,4'-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis[phenol]	In vivo	Not mutagenic
4,4'-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis[phenol]	In Vitro	Some positive data exist, but the data are not sufficient for classification

Carcinogenicity

- Cui timogement			
Name	Route	Species	Value
Bis(4-chlorophenyl) sulphone	Ingestion	Multiple	Not carcinogenic
		anımal	
		species	

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
Bis(4-chlorophenyl) sulphone	Ingestion	Not classified for female reproduction	Rat	NOAEL 50 mg/kg/day	42 days
Bis(4-chlorophenyl) sulphone	Ingestion	Not classified for male reproduction	Rat	NOAEL 50 mg/kg/day	premating into lactation
Bis(4-chlorophenyl) sulphone	Ingestion	Not classified for development	Rat	NOAEL 15 mg/kg/day	premating into lactation
4,4'-[2,2,2-trifluoro-1- (trifluoromethyl)ethylidene]bis[phenol]	Ingestion	Toxic to female reproduction	Rat	LOAEL 338 ppm in the diet	2 generation
4,4'-[2,2,2-trifluoro-1- (trifluoromethyl)ethylidene]bis[phenol]	Ingestion	Toxic to male reproduction	Rat	LOAEL 338 ppm in the diet	2 generation
4,4'-[2,2,2-trifluoro-1- (trifluoromethyl)ethylidene]bis[phenol]	Ingestion	Toxic to development	Rat	LOAEL 338 ppm in the diet	2 generation

Target Organ(s)

Page: 7 of 11

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure
						Duration
Bis(4-chlorophenyl)	Inhalation	respiratory irritation	Some positive data exist, but the	similar	NOAEL Not	
sulphone			data are not sufficient for	health	available	
			classification	hazards		
4,4'-[2,2,2-trifluoro-1-	Inhalation	respiratory irritation	Some positive data exist, but the	similar	NOAEL Not	
(trifluoromethyl)ethylidene			data are not sufficient for	health	available	
]bis[phenol]			classification	hazards		

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Vinylidene Fluoride - Hexafluoropropylene Polymer	Ingestion	liver	Not classified	Rat	NOAEL 10,000 mg/kg/day	2 weeks
Bis(4-chlorophenyl) sulphone	Ingestion	hematopoietic system liver immune system	Not classified	Rat	NOAEL 200 mg/kg/day	14 weeks
Bis(4-chlorophenyl) sulphone	Ingestion	kidney and/or bladder	Not classified	Rat	NOAEL 19 mg/kg/day	14 weeks
Bis(4-chlorophenyl) sulphone	Ingestion	heart endocrine system gastrointestinal tract bone, teeth, nails, and/or hair muscles nervous system respiratory system vascular system	Not classified	Rat	NOAEL 200 mg/kg/day	14 weeks
4,4'-[2,2,2-trifluoro-1- (trifluoromethyl)ethylidene]bis[phenol]	Ingestion	heart endocrine system gastrointestinal tract hematopoietic system liver nervous system kidney and/or bladder	Not classified	Rat	NOAEL 100 mg/kg/day	28 days

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient—is present below the threshold for labelling, an ingredient—is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

Acute aquatic hazard:

Not acutely toxic to aquatic life by GHS criteria. Aquatic toxicity classifications based on the results from a leachate study conducted per methodology allowed for in Annex 10 of UN GHS.

Chronic aquatic hazard:

Not chronically toxic to aquatic life by GHS criteria. Aquatic toxicity classifications based on the results from a leachate

study conducted per methodology allowed for in Annex 10 of UN GHS.

No product test data available.

Material	CAS Nbr	Organism	Туре	Exposure	Test endpoint	Test result
Vinylidene	9011-17-0	N/A	Data not available	N/A	N/A	n/a
Fluoride -			or insufficient for			
Hexafluoropropyle			classification			
ne Polymer				1		
4,4'-[2,2,2-	1478-61-1	Green algae	Experimental	72 hours	ErC50	>0.808 mg/l
trifluoro-1-						
(trifluoromethyl)et						
hylidene]bis[pheno						
4,4'-[2,2,2-	1478-61-1	Water flea	Experimental	48 hours	EC50	2.7 mg/l
trifluoro-1-	1478-01-1	water fied	Experimental	46 110015	ECSO	2.7 mg/1
(trifluoromethyl)et						
hylidene]bis[pheno						
[1]						
4,4'-[2,2,2-	1478-61-1	Green algae	Experimental	72 hours	NOEC	0.0522 mg/l
trifluoro-1-						
(trifluoromethyl)et						
hylidene]bis[pheno						
1]						
4,4'-[2,2,2-	1478-61-1	Water flea	Experimental	21 days	NOEC	0.23 mg/l
trifluoro-1-						
(trifluoromethyl)et						
hylidene]bis[pheno						
4,4'-[2,2,2-	1478-61-1	Zebra Fish	Experimental	28 days	NOEC	0.05 mg/l
trifluoro-1-	14/6-01-1	Zeora Fish	Experimental	20 days	NOEC	0.03 mg/i
(trifluoromethyl)et						
hylidene]bis[pheno						
4,4'-[2,2,2-	1478-61-1	Activated sludge	Experimental	3 hours	EC50	126.8
trifluoro-1-			1			
(trifluoromethyl)et						
hylidene]bis[pheno						
1]						
Bis(4-	80-07-9	Green algae	Endpoint not	72 hours	EC50	>100 mg/l
chlorophenyl)			reached			
sulphone	00.07.0	1 2 1 1 1	-	2.1	EG10	1,000
Bis(4-	80-07-9	Activated sludge	Experimental	3 hours	EC10	>1,000 mg/l
chlorophenyl)						
sulphone Bis(4-	80-07-9	Water flea	Experimental	48 hours	EC50	>100 mg/l
chlorophenyl)	30-07-9	water fied	Experimental	46 110015	ECSO	- 100 mg/1
sulphone						
Bis(4-	80-07-9	Zebra Fish	Experimental	96 hours	LC50	>100 mg/l
chlorophenyl)		2001411511	Z.iperimentar) o 110 u15	2000	100 mg/1
sulphone						
Bis(4-	80-07-9	Green algae	Experimental	72 hours	NOEC	0.28 mg/l
chlorophenyl)			*			
sulphone						
Bis(4-	80-07-9	Water flea	Experimental	21 days	NOEC	0.32 mg/l
chlorophenyl)						
sulphone						
Benzyltriphenylpho	1100-88-5	Green algae	Experimental	72 hours	EC50	0.59 mg/l
sphonium chloride	11100 00 5	1	<u> </u>	10.1	1222	
Benzyltriphenylpho	1100-88-5	Water flea	Experimental	48 hours	EC50	1 mg/l
sphonium chloride	1100.00.5		Б : . 1	72.1	EG10	0.25
Benzyltriphenylpho	1100-88-5	Green algae	Experimental	72 hours	EC10	0.25 mg/l
sphonium chloride	I			1		1

12.2. Persistence and degradability

Page: 9 of 11

Material	CAS Nbr	Test type	Duration	Study Type	Test result	Protocol
Vinylidene Fluoride - Hexafluoropropyle ne Polymer	9011-17-0	Data not available- insufficient	N/A	N/A	N/A	N/A
4,4'-[2,2,2- trifluoro-1- (trifluoromethyl)et hylidene]bis[pheno l]	1478-61-1	Experimental Biodegradation	28 days	CO2 evolution	0 %CO2 evolution/THCO2 evolution	OECD 301B - Modified sturm or CO2
4,4'-[2,2,2- trifluoro-1- (trifluoromethyl)et hylidene]bis[pheno l]	1478-61-1	Estimated Hydrolysis		Hydrolytic half-life (pH 7)	>1 years (t 1/2)	EC C.7 Hydrolysis at pH
Bis(4- chlorophenyl) sulphone	80-07-9	Experimental Biodegradation	28 days	BOD	0 %BOD/ThOD	OECD 301C - MITI test (I)
Benzyltriphenylpho sphonium chloride	1100-88-5	Experimental Biodegradation	28 days	BOD	0-1 %BOD/ThOD	OECD 301D - Closed bottle test

12.3 : Bioaccumulative potential

Material	CAS Nbr	Test type	Duration	Study Type	Test result	Protocol
Vinylidene Fluoride - Hexafluoropropyle ne Polymer	9011-17-0	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
4,4'-[2,2,2- trifluoro-1- (trifluoromethyl)et hylidene]bis[pheno l]	1478-61-1	Experimental BCF - Other	168 hours	Bioaccumulation factor	9.0	OECD305-Bioconcentration
4,4'-[2,2,2- trifluoro-1- (trifluoromethyl)et hylidene]bis[pheno l]	1478-61-1	Experimental Bioconcentration		Log Kow	2.79	EC A.8 Partition Coefficient
Bis(4- chlorophenyl) sulphone	80-07-9	Experimental BCF - Fish	35 days	Bioaccumulation factor	82	OECD305-Bioconcentration
Benzyltriphenylpho sphonium chloride	1100-88-5	Experimental Bioconcentration		Log Kow	-0.7	

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1. Disposal methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of completely cured (or polymerized) material in a permitted industrial waste facility. As a disposal alternative, incinerate uncured product in a permitted waste incineration facility. Proper destruction may require the use of additional fuel during incineration processes. Combustion products will include HF. Facility must be capable of handling halogenated materials. If no other disposal options are available, waste product that has been completely cured or polymerized may be

placed in a landfill properly designed for industrial waste. Empty drums/barrels/containers used for transporting and handling hazardous chemicals (chemical substances/mixtures/preparations classified as Hazardous as per applicable regulations) shall be considered, stored, treated & disposed of as hazardous wastes unless otherwise defined by applicable waste regulations. Consult with the respective regulating authorities to determine the available treatment and disposal facilities.

SECTION 14: Transport Information

International Regulations

UN No.: None assigned

UN Proper shipping name: None assigned

Transportation Class (IMO): None assigned Transportation Class (IATA): None assigned

Other Dangerous Goods Descriptions (IMO): None assigned Other Dangerous Goods Descriptions (IATA): None assigned

Packing Group: None assigned Marine pollutant: None assigned

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Global inventory status

Contact 3M for more information. The components of this product are in compliance with the chemical notification requirements of TSCA. All required components of this product are listed on the active portion of the TSCA Inventory.

This product may contain component(s) that are regulated by the following:

Workplace Safety and Health Act & Workplace Safety and Health (General Provisions) Regulations: this product is subject to SDS, labelling, PEL and other requirements in the Act/Regulations.

SECTION 16: Other information

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

3M Singapore SDSs are available at www.3m.com.sg

p.... 11 . c. 1