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ABSTRACT 

It has recently been reported1 (TAPPI-2000) that different
types of High-Performance Hexene LLDPE (HPH-LLDPE)
behave differently with respect to the onset of sharkskin-melt-
fracture (SSMF), depending on the breadth of the molecular
weight distribution (MWD).   The MWD differences were
small and subtle, but the effect on the onset of melt fracture
was significant. The present study is a continuation of that
work, through a comparative investigation under shear rate
conditions high enough to induce melt fracture in both narrow
and broad-MWD LLDPEs.  A polymer processing additive
(PPA) was then added in stepwise increments in order to
eliminate melt fracture.  It was found that the narrow-MWD
resin required more than twice the amount of PPA in order to
eliminate SSMF.  

INTRODUCTION 

There have been significant developments in recent years in
the area of hexene-LLDPE resins for film applications.  The
common characteristic of the new hexene-LLDPE resins is
that they achieve significant enhancement in film strength
properties.  There are, however, subtle differences between
the commercially available High-Performance Hexene LLDPEs
that can translate to different extrusion or film performance
behavior.  In a  recent paper1, the relative behavior of two
families of HPH-LLDPEs with respect to SSMF  was
investigated via blown film extrusion and capillary rheology
experiments.  The broader-MWD HPH showed no signs of
SSMF within the range of blown film conditions studied,
whereas the narrower-MWD HPH showed severe SSMF
within the same range of processing conditions.  Film impact
strength, as measured by dart drop, was shown to be very
sensitive to SSMF and was reduced drastically by SSMF,
whereas capillary rheology seemed less effective in
distinguishing relatively small differences in SSMF tendency
The present study is a continuation of the earlier work1,
through a comparative investigation under shear rate
conditions high enough to induce melt fracture in both narrow
and broad-MWD LLDPEs. A PPA was then added in stepwise
increments in order to eliminate melt fracture. PPAs are used
in blown film extrusion to eliminate melt fracture and provide
other extrusion benefits such as throughput improvement, gel
reduction and die build-up reduction2. The objective of this
study was to determine the amount of fluoropolymer PPA
required to suppress SSMF and how this amount may be
influenced by the breadth of the MWD.  

EXPERIMENTAL

Materials

The LLDPE resins studied are listed in Table I.  Samples A 
and B are commercially available, high-performance hexene-

LLDPE, tradenamed Petrothene Select™, described
elsewhere3.  Sample A and Sample B are both of the
Petrothene Select™-type, the only difference being in the
Melt Index.  Sample C is a narrower-MWD, high-performance
hexene-LLDPE.  The fluoropolymer PPA is Dynamar™ FX 5920A
and was added as a 3% masterbatch in 2 MI LLDPE.  

Melt Fracture Evaluations

Equipment. As in similar studies from the Dyneon laboratory4,
melt fracture evaluations were performed on a Kiefel blown
film line, equipped with a 1.6 in (40mm) grooved feed extruder
(24:1 L/D) and a 1.6 in (40mm) die with a 0.024 in (0.6mm) die
gap.  Target melt temperature is 204.4°C (400°F) and both
extruder and die zones are set at 204.4°C (400°F).  The output
rate is 28 lb/hr (12.7 Kg/hr), which translates to shear rate at
the die gap of approximately 600 sec-1.  BUR, layflat and take-
off speed are 1.6, 8.5 in and 40 ft/min (1.6, 21.6 cm and
12.2m/min), respectively.  

General procedure. Film line formulations were prepared by
tumble blending the LLDPE resin with the appropriate amount
of the PPA masterbatch on a pail tumbler for a minimum of 10
minutes before charging to the film line extruder.  For the PPA
minimum level experiments, the initial PPA level tested was
chosen so as to have  the initial level too low to completely
eliminate melt fracture within one hour.  Before each run the
film line was purged with a 70% calcium carbonate in LDPE
purge compound followed by a neat LLDPE film resin.
Throughout the trial the film line conditions were recorded and
film samples taken every 15 minutes.  To measure the amount
of melt fracture in a film sample, a sample of the layflat was
placed on an overhead projector to project the image onto a
larger surface.  The melt fracture was recorded as a
percentage of the layflat.

PPA minimum level studies. To determine the minimum
level of PPA needed to eliminate melt fracture, the following
procedure was followed in all cases: 

1. Establish base line conditions with the base resin sample.  
Run for at least 1 hour to establish 100% melt fracture and
steady baseline gate pressure.

2. Charge resin sample containing 400 ppm PPA.  
Run for 1 hour.  

3. If melt fracture is not eliminated in the previous step,
increase PPA level by 100 or 200 ppm, depending on the
amount of melt fracture remaining, and run that condition
for one hour.

4. Repeat step 3, increasing PPA level by at least 100 ppm
until melt fracture is completely eliminated.  

5. Purge the line and continue the procedure with the 
next sample.  

A summary of the blown film trial data can be found in Table II.
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RESULTS AND DISCUSSION

Resin Structure and Melt Fracture Tendency

Past work1 with the resins of the present study showed a
substantial difference in melt fracture tendency.  Under the
film fabrication conditions of Ref.[1], Samples A & B showed
no melt fracture, whereas Sample C showed severe melt
fracture once the shear rate exceeded ~200 sec-1, for a die gap
of 1.0 mm (0.040”).  The effect of sharkskin melt fracture is
most dramatically evident on the film impact strength, as
measured by Dart Drop.  Fig.1, taken from Ref.[1], shows a
comparison of film impact data for the three resins of the
present study.  It is clearly evident that with Sample C there is
a transition around ~200 sec-1, at which the Dart Drop impact
strength suffers a precipitous reduction.  No such transition
can be seen in the data of Samples A & B.  A visual
comparison of Samples A & C at a shear rate of 300 sec-1 is
given in Fig.2.  

The difference in molecular structure responsible for the
observed difference in melt fracture tendency is believed to
be the breadth of MWD, as Fig.3 shows.  Other additives that
may interfere with melt fracture, such as antiblock or
stearates5-8, are listed in Table I and are shown to be at
comparable levels for all three samples.  Samples A and B
have similar MWD, the only difference being a slight
difference in average molecular weight (reflected in the
different Melt Index).  Sample C has a slightly narrower MWD
and a Melt Index intermediate between that of Samples A & B.  

The differences in MWD are directly reflected in the
rheological properties, as Figs.4-6 show.  Specifically, Fig.5 is a
representation of the rheological data designed9 to normalize
out the molecular weight effect and only show MWD
differences (broader MWD corresponding to higher G’, also
quantified in the ER value of Table I.  The ER and PDR
numbers listed in Table I, are measures of rheological
polydispersity, as shown and discussed in Ref.[9]).  As Fig.5
shows, Samples A&B are virtually indistinguishable, whereas
Sample C is narrower, in agreement with Fig.3.  

It is also important to examine the capillary viscosity data over
the range of shear rates used in the melt fracture elimination
studies (Fig.6).  It can be seen that Sample A has the highest
viscosity at all shear rates, followed closely by Sample C.  This
ranking of viscosities is relevant to the criterion of the onset of
sharkskin melt fracture.  It has been suggested that melt
fracture sets in at a critical value of shear stress.  If this critical
shear stress were a universal parameter, independent of
MWD, we would expect the following order in melt fracture
tendency: A~ C >>B, with A having the worst melt fracture
tendency.  The results below are clearly in disagreement with
such an order and therefore the critical shear stress must
depend on MWD.  

Melt Fracture Elimination Studies

Following the procedure outlined in the experimental section,
we were able to establish 100% melt fracture with all three
(A, B and C) base resins at the run conditions selected;
204.4°C (400°F) and 600 s-1.  The resin samples did vary
however in the degree of melt fracture.  At the baseline
conditions, without processing additive, Sample C had the
sharpest, most well defined melt fracture pattern, followed by
A and then B which showed the softest melt fracture even
though it covered 100% of the layflat.  Sample A run at a melt
temperature of 221.1°C (430°F)  had a slightly softer melt
fracture pattern than when run at 204.4°C (400°F). 

Once the PPA processing additive was added to the resin, it
appeared to clear melt fracture slightly faster in Sample A than
in Sample B although total elimination of melt fracture
occurred essentially at the same time and level of processing
additive, clearing between 3 and 3 1/2 hours and at 600 ppm
PPA (Fig.7).  The response to processing additive was
significantly different in Sample C.  Although 600 ppm PPA
was sufficient to clear Samples A and B, at 600 ppm PPA the
Sample C film still had 90% melt fracture remaining at the end
of the hour.  At 1000 ppm the film still had 4% melt fracture
remaining.  After running the 1000 ppm condition, we had only
enough Sample C to run one more level of processing
additive, so we increased the PPA level to 1600 ppm.  At 1600
ppm PPA the melt fracture was quickly eliminated so the
actual minimum level to clear melt fracture is probably
between 1000 and 1600 ppm PPA (Fig.8).

Gate pressures of the resins were also recorded.  Sample A
had the highest baseline gate pressure followed by C,
whereas Sample B had the lowest gate pressure (see Figs.9-
10).  Therefore the average wall shear stress for Sample C is
intermediate to that of Samples A and B and yet Sample C had
the worst melt fracture.  It would appear that the criterion of a
critical shear stress for onset of melt fracture is not universally
valid, or at least that it shows a MWD-dependence.  

Finally, melt temperature appeared to have little effect on PPA
performance in Sample A.  Although the baseline melt fracture
was slightly softer at 221.1°C (430°F)  than at 204.4°C (400°F)
the rate of melt fracture elimination was not significantly
different (Fig.11).  In other resin systems evaluated at Dyneon
we have observed that by running at lower temperatures the
processing additive sometimes provides larger pressure
reduction over the base condition than running with
processing additive at higher temperatures2.  That was not
evident in this trial as indicated by the overall pressure
reductions at 204.4°C (400°F) and 221.1°C (430°F), Fig.12. 
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CONCLUDING REMARKS

The onset of sharkskin-melt-fracture (SSMF) in LLDPE shows
a dependence on the breadth of the molecular weight
distribution (MWD), with narrow-MWD showing SSMF earlier
(lower shear rate).   At sufficiently high shear rates, both
narrow and broad MWD LLDPEs show SSMF.  Addition of a
PPA can eliminate SSMF.  The results of the present work
show that the PPA amount required to eliminate SSMF also
depends on the breadth of the MWD.  For the polymers
studied in the present work, the narrower-MWD LLDPE
required more than twice the amount of PPA, even though the
differences in MWD were relatively small.  Capillary viscosity
measurements showed that the level of shear stress was
comparable, or slightly higher, for the broader-MWD LLDPE.  It
would therefore appear that the critical shear stress for the
onset SSMF is not a universal constant but depends on the
breadth of MWD , with higher critical shear stress for broader-
MWD.  
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Table I.  List of hexene-LLDPE resins studied

Sample A Sample B Sample C

Type hexene-LLDPE hexene-LLDPE hexene-LLDPE

Melt Index 0.7 1.0 0.9

Density 0.916 0.916 0.917

Slip (Erucamide),ppm 1300 1350 1500

Antiblock (Talc), ppm 7900 6000 7800

Zn-Stearate, ppm 450 640 470

GPC

Mw 147,000 133,000 137,000

Mw/Mn 4.8 5.4 3.8

Mz/Mw 2.7 2.8 2.6

Rheology 200°C (392°F)

ER (Ref.3) 0.83 0.82 0.59

PDR (Ref.3) 3.6 3.9 3.1



Table II.  Blown Film Trial Data Summary

Sample A + PPA at 204.4°C (400°F)

Melt Drive Melt

Time PPA Level Temp. Screw Output Gate Press. Motor Fracture

(hrs)(1) (ppm) °C (°F) rpm (lb/hr) (psi) Amps %

1 0 205 (401) 42 29.3 2470 37 100

2 400 204.4 (400) 39 28 2420 35 25

3 500 205 (401) 39 28.4 2380 35 <1

3.5 600 205 (401) 39 28.2 2350 34 0

Sample B + PPA at 204.4°C (400°F)

Melt Drive Melt

Time PPA Level Temp. Screw Output Gate Press. Motor Fracture

(hrs)(1) (ppm) °C (°F) rpm (lb/hr) (psi) Amps %

1 0 202.22 (396) 42 28.7 1950 32 100

2 400 203.33 (398) 41 28.6 1980 32 60

3 500 204.4 (400) 40 28.2 1900 31 1

3.25 600 204.4 (400) 40 28.3 1900 31 0

Sample C + PPA at 204.4°C (400°F)

Melt Drive Melt

Time PPA Level Temp. Screw Output Gate Press. Motor Fracture

(hrs)(1) (ppm) °C (°F) rpm (lb/hr) (psi) Amps %

1 0 203.33 (398) 39 28.6 2280 39 100

2 400 205 (401) 37 28.5 2250 37 100

3 600 204.4 (400) 37 28.2 2210 36 90

4 1000 204.4 (400) 37 28.5 2180 35 4

4.5 1600 205 (401) 38 28.2 2120 31 0

Sample A + PPA at 221.1°C (430°F)

Melt Drive Melt

Time PPA Level Temp. Screw Output Gate Press. Motor Fracture

(hrs)(1) (ppm) °C (°F) rpm (lb/hr) (psi) Amps %

0.5 -1 0 220.55 (429) 43 29.4 2150 37 100

2 400 221.66 (431) 39 28.2 2090 34 15

3 500 221.66 (431) 39 28.3 2040 32 0

(1)  Data shown was taken at the end of the hour indicated.  The baseline condition, no PPA, was only run for 1/2 hr for Sample A at 221.1°C (430°F).



Figure 1. Effect of output rate on film impact strength (shear
rate is proportional to output rate).  Sharkskin melt fracture
appears on Sample C at ~200 sec-1 and causes a precipitous
reduction in film impact strength.  Samples A and B show no
melt fracture at all shear rates examined.

Figure 2. Illustration of the difference in sharkskin melt
fracture of  blown films with Sample A and Sample C (1.0 mm
die gap, Shear Rate~300 sec-1).  MD- and TD-direction are
vertical and horizontal, respectively.

Figure 3. Comparison of Molecular Weight Distributions.
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Figure 4. Comparison of dynamic viscosity data at
200°C (392°F). 

Figure 5. Dynamic viscoelastic data in a form suitable for
identifying rheological polydispersity: Samples A and B
have indistinguishable polydispersity and are both broader
than Sample C. 

Figure 6. Capillary viscosity data 210°C (410°F).  Instron
Capillary Rheometer.  Flat entry die, 0.5 mm diameter, 
40/1 L/D.  

Sample C Sample A



Figure 7. Kinetics of melt fracture elimination and PPA
concentration required to eliminate melt fracture completely,
for Samples A and B.

Figure 8. Kinetics of melt fracture elimination and PPA
concentration required to eliminate melt fracture completely,
for Sample C.  Note higher PPA concentration required,
compared to Samples A and B in Fig.7.

Figure 9.  Pressure traces in the melt fracture elimination test
of Fig.7, for Samples A and B.

Figure 10. Pressure traces in the melt fracture elimination
test of Fig.8, for Sample C.  Note that the pressure level is
intermediate to that of Samples A and B in Fig.9. 

Figure 11. Effect of melt temperature on the kinetics of melt
fracture elimination and PPA concentration required to
eliminate melt fracture completely,  for Sample A.

Figure 12. Pressure traces in the melt fracture elimination
test of Fig.11, for Sample A (effect of melt temperature).
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Technical Information and Test Data
Technical information, test data, and advice provided by Dyneon personnel are based on information
and tests we believe are reliable and are intended for persons with knowledge and technical skills
sufficient to analyze test types and conditions, and to handle and use raw polymers and related
compounding ingredients. No license under any Dyneon or third party intellectual rights is granted or
implied by virtue of this information.
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