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ABSTRACT
The effect of varying:

¢ Die Gap

e Shear Rate

e Backpressure
e Qutput

on the ability of Dynamar™ PPA to eliminate melt fracture from
linear low density polyethylene (LLDPE) blown film was
evaluated. Correlations between time for melt fracture
elimination and the various process parameters were made.

INTRODUCTION

The extrusion of molten polymers is often limited by the
occurrence of melt fracture (MF). Although there is more than
one phenomenon described by this term, sharkskin is the
most common melt fracture type for film grade linear low
density and high-density polyethylene (LLDPE and HDPE
respectively). Sharkskin is an undesirable surface roughness
on extruded plastic articles, often also referred to as orange
peel or matte. It limits production rates and harms film
physical and optical properties. Sharkskin is a problem that will
occur upon increasing the shear rate during extrusion. It is also
temperature dependent, and lowering the temperature can
exacerbate the problem’.

The extrusion condition on a processing line will be chosen to
minimize this problem. One way to circumvent the problem is
to increase the die gap, thus reducing the shear rate and
minimizing the sharkskin. However, narrow die gaps have
many advantages including: providing equipment flexibility,
improved MD tear, improved gauge control, improved bubble
stability and improved optics?. The temperature can be
increased, but this often negatively affects bubble stability, or
may not be an option depending on the cooling capacity.

An alternative to increasing the die gap or the temperature is
to use a polymer processing additive (PPA). PPAs provide a
slip layer inside the die that will alleviate sharkskin and will also
reduce backpressure®. This allows the use of narrow die gaps,
therefore reducing the need for draw down which in returns
yields better physical properties*. An additional benefit of
using a PPA is the reduction of gel formation® or die build-up
elimination®.

A parameter that has not previously been evaluated was the
impact of the change in die gap on the formation of the slip
layer inside the die. The goal of this study was to evaluate the
importance of the die gap on time required for the PPA to coat
the die metal. The amount of PPA required to coat the die was
also evaluated.

One of the difficulties in such an analysis is the comparison
point between the two die gaps may be equipment and

extrusion condition dependant. As an example, one could chose
to compare the results at the same output or the same shear
rate. The results obtained in those two cases would be different.

Because some extruders are backpressure limited while

others are output limited, we chose to do this comparison
under both conditions. We also compared the two dies at
constant shear rate and at constant average melt velocity.

EXPERIMENTAL
Materials

The polyethylene resin studied herein was commercially
obtained. It was a well-stabilized octene copolymer of LLDPE
with a 1Ml and a 0.920g/cm? density. Only one commercially
available PPA was used: Dynamar™ Polymer Processing
Additive FX 9613. For the purposes of this paper. this product
will be referred to as PPA-1. The PPA-1 was added using 3%
masterbatch that was commercially obtained.

Equipment

Melt fracture (MF) elimination trials were conducted using a
Kiefel blown film line with a 40 mm, 24/1, grooved feed
extruder. The die was of spiral design with a 40 mm diameter
and 0.6 mm or 0.9 mm die gap (24 or 35 mil).

Test Method

Between each test, the extruder and die surfaces were
cleaned by purging the extruder with a 70% CaCO5
masterbatch for half an hour. The extruder was then allowed
to equilibrate with a ‘barefoot’ (no processing aid) control resin
at the selected output and the gate pressure was monitored.
At the beginning of each test, the film was fully fractured and
the gate pressure was stable and consistent between tests.

For each test, the additive was added at a level of 500ppm and
the percentage of the film surface that was fractured was
monitored with time as a measurement of the coating of the
die by the PPA-1. We will report either the time for melt
fracture elimination or the coating time.

A series of outputs were selected to allow a direct comparison
between the two dies, while keeping either the shear rate, the
output, the backpressure, or the melt velocity constant. Table |
summarizes the conditions tested.

RESULTS AND DISCUSSION
Melt Fracture Elimination

As a forewarning, it should be pointed out that this study was
done in a well-stabilized LLDPE with no other additives than
the antioxidant package. For instance, the presence of
antiblock, slip, or light stabilizer is likely to yield different



results 782, Similarly, synergists such as antioxidants may
show a different correlation™.

It must also be pointed out that we are describing here the
coating process of the die. The correlation between coating
time and maintenance level of PPA-1 is not described here and
will hopefully be part of a future study.

The melt fracture elimination curves for the six conditions
given in Table | are shown in Figure 1. The results given here
clearly show that the coating process is not independent of
the process conditions.

As an example, with the 0.9 mm die, the rate of melt fracture
elimination increases with the output This is also observed
with the 0.6 mm die, however, there is only a small difference
between the 6.8kg/h (B) and 13.6/kg/h (C) data. It can also be
noted when comparing the two dies that the time to eliminate
melt fracture is not solely dependent on output

Each pair of data can also be compared. Test C and Test F are
both at 13.6kg/h. However, the coating time is shorter on the
0.6 mm die. This is an indication that the coating process is
not a simple matter of mass throughput. We will expand more
on this, later in this article.

When comparing Test B and Test E, or Test A and Test D,
(Tests that exhibit the same melt velocity), again, the narrower
die provides a more efficient coating process. A similar trend
is obtained for constant backpressure when comparing Test B
and Test D.

When comparing Test B and Test F, the overlap between the
two curves is fairly good. This would indicate that the shear
rate is the main factor controlling the coating process.

To confirm that the coating time is not directly related to
throughput, we normalized the coating curves and plotted
them as a function of the amount of PPA-1 going through the
die on Figure 2. Again, if the coating time was solely output
controlled, all the curves would overlap.

In Figure 2, all the Tests with the 0.6 mm die require less
PPA-1 than the Tests with the 0.9 mm die. This is an indication
that only the portion of the PPA-1 that is close to the die wall is
used in the coating process. The PPA-1 in the core of the
extrudate does not contribute to the melt fracture elimination.
In the narrower die, there is less core material; therefore, the
PPA-1 is used more efficiently.

We must point out that previous results' indicated that for
constant shear rate, increasing level of PPA-1 could be
normalized to a constant level. This indicates that the amount
of PPA-1 going through the die is important but the conditions
of extrusion are playing a role as well.

Another point to notice on Figure 2 is that for the 0.9 mm die
the amount of PPA-1 required is proportional to the
throughput. However, this is not true for the 0.6 mm die
where the Test B (6.8 kg/h) requires the least PPA-1. We
suspect that the Test C (13.6 kg/h) corresponds to a shear rate
(639/s) that is too close to the onset of cyclic melt fracture
(CMF). This disturbs the coating process.

Gaussian Analysis

In order to get a better understanding of the coating process,
we tried to analyze the coating process as a statistical
phenomenon. In that case, the droplets of PPA-1 would reach
the die in a random fashion (for a given set of conditions), and
the die coverage would follow a normal distribution.

If this assumption were valid, a probability plot would lead to a
linear relation. The data from Figure 1 was plotted using a
probability scale on Figure 3. From the regression, one can
obtain the average time (time to 50% MF, t;,) and the
standard deviation (sigma). The results for those two
regression parameters are reported in Table II. For this study,
we selected t, as a comparative factor for the coating time.
ty,7 is a statistical average of the whole coating curve and
should be a good representation of the coating process.

From these regression parameters, one can calculate the
statistical coating curve. This is shown on Figure 4, where the
agreement between the calculated curves and the raw data is
good. Results from Figure 3 are indeed following a linear
relation consistent with a Gaussian process. Similarly, Figure 4
indicates that the Gaussian analysis is a good first
approximation for the process we are describing here.

When plotting the time to 50% MF vs. the output, the results
obtained from each die are well differentiated on Figure 5. This
is again indicative of the coating process being correlated with
the shear rate rather than the output, as shown on Figure 6.

[t must be pointed out that for a single die, within the linear
region of Figure 6, one cannot differentiate between shear
rate and output. It is only when comparing two dies, that one
can see the importance of the shear rate.

CONCLUSIONS

We evaluated the effect of the die gap on the coating process
of a PPA on a film-blowing die. The effect of varying the shear
rate, the backpressure, the melt velocity, and the output, was
monitored for two die gaps. The time to eliminate melt
fracture and the amount of PPA-1 required to do so showed no
correlation with the melt velocity or the backpressure.

However, there is some correlation between the time to
eliminate melt fracture and the output. This correlation exists



only below a maximum shear rate (below 350/s in our data
set). Furthermore, this correlation is valid for a single die only.
When comparing data from two dies, the shear rate is a better
descriptor of the coating process. The correlation is then
independent of the die selected.

The data was also analyzed using a Gaussian approach. The
correlation with the shear rate was again clearly demonstrated
when plotting the time to eliminate 50% of the melt fracture.
In this case, we obtained a linear correlation.

However, at high shear rates, the data does not follow the
same trend. We suspect that to be linked to the onset of CMF.
At those high shear rates, the higher stresses and the
perturbations from the CMF would disturb the coating process
and increase the coating time.

The throughput was shown in the past to be one of the main
factors in reducing the coating time (constant conditions,
increasing levels)™. The results obtained here indicate the
shear rate also has a significant effect. At higher shear rates,
the PPA-1 is coating the die more efficiently. This
phenomenon is probably linked to the flow profile in the die
and related to the stress gradient across the die.
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Table I: Processing Conditions Table II: Regression Parameters from the
Gaussian Analysis
Test A B € D E F
Conditions
Conditions t2 Sigma
Gap (min) (min)
0.6 0.6 06 09 09 0.9 min min
(mm)
Outout A:5.4kg/h, 0.6 mm 83.5 64.1
utpu
(kg/h) 5.4 68 136 82 100 136 B: 6.8kg/h, 0.6 mm 415 30.9
(S1r;tsa;=\r Rate 256 320 639 180 220 300 C:13.6kg/h, 0.6 mm  33.4 237
D: 8.2kg/h, 0.9 mm 215.7 144.9
Av. Velocity
(em/s) 259 324 648 267 326 4.44 E: 10.0kg/h, 0.9 mm 1256 733
Backpressure 634 779 122 779 917 111 F: 13.6kg/h, 0.9 mm 51.5 27.9
(MPa)
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Figure 1: Melt Fracture Elimination vs. Time

Figure 2: Melt Fracture Elimination vs. Mass of PPA-1
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