Signal Integrity Test Report

3M™ External MiniSAS Cable Assemblies

3M Electronic Solutions Division
6801 River Place Blvd.
Austin, TX 78726-9000
1.0 Scope ... 2
2.0 Product Tested .. 2
3.0 General Conditions ... 2
 3.1 Test Specimens ... 2
 3.2 Standard Test Conditions ... 2
4.0 Test Results Summary .. 3
5.0 Testing .. 4
 5.1 General ... 4
 5.2 Signal Integrity ... 4
 SDD21, Differential insertion loss ... 4
 SDD22, Differential reflection loss ... 5
 SCD21, Differential to common mode conversion ... 6
 SCD22, Differential to common mode reflection ... 7
 SCD21-SDD21 ... 8
 Near end crosstalk (NEXT) .. 9
 BER channel simulation ... 11
1.0 Scope

This data sheet summarizes test methods, test conditions and product performance for the 3M Ribbon Twin Axial External MiniSAS Cable Assemblies.

2.0 Product Tested

<table>
<thead>
<tr>
<th>Product:</th>
<th>Ribbon Twin Axial External MiniSAS Cable Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Number:</td>
<td>8G26 series; Assemblies tested</td>
</tr>
<tr>
<td>S-parameters and NEXT:</td>
<td></td>
</tr>
<tr>
<td>8G26-0A-CW1-01-2.30</td>
<td></td>
</tr>
<tr>
<td>8G26-8A-CW1-01-5.00</td>
<td></td>
</tr>
<tr>
<td>BER channel simulation:</td>
<td></td>
</tr>
<tr>
<td>8G26-0A-CW1-01-1.00</td>
<td></td>
</tr>
<tr>
<td>8G26-8A-CW1-01-3.00</td>
<td></td>
</tr>
<tr>
<td>8G26-8A-CW1-01-5.00</td>
<td></td>
</tr>
</tbody>
</table>

3.0 General Conditions

3.1 Test Specimens

The test specimens shall be strictly in compliance with the design, construction details and physical properties detailed in the relevant technical specification sheet (See Section 2).

3.2 Standard Test Conditions

The test shall be done under the following conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>15°C to 35°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>45% to 75%</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>650 to 800 mmHg</td>
</tr>
</tbody>
</table>
Test Results Summary

<table>
<thead>
<tr>
<th>Items</th>
<th>Specification per SAS2.1 rev07</th>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Integrity (Passive Cable)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential insertion loss, SDD21</td>
<td>Per SAS2.1 section 5.5.4: Loss less than TCTF test load specified in section 5.6.3 (see figure 93)</td>
<td>SAS-2.1 rev 07 sections 5.5.4, 5.6.3 (figure 93) and Annex D.10</td>
<td>PASS</td>
</tr>
<tr>
<td>Differential reflection loss, SDD22</td>
<td>Meets SAS2.1 limit line: < -10 dB up to 2.08 GHz < -7.9+13.3 x log(f / 3 GHz) between 2.08 and 6 GHz</td>
<td>SAS-2.1 rev 07 sections 5.5.4 and Annex D.10</td>
<td>PASS</td>
</tr>
<tr>
<td>Differential-to-common mode conversion, SCD21</td>
<td>Meets SAS2.1 limit line: < -18 dB up to 6 GHz</td>
<td>SAS-2.1 rev 07 sections 5.5.3 and Annex D.10</td>
<td>PASS</td>
</tr>
<tr>
<td>Differential to common mode reflection, SCD22</td>
<td>Meets SAS2.1 limit line: < -26 dB up to 300 MHz < -12.7+13.3 x log(f / 3 GHz) between 300 MHz and 4.78 GHz < -10 dB between 4.78 and 6 GHz</td>
<td>SAS-2.1 rev 07 sections 5.5.3 and Annex D.10</td>
<td>PASS</td>
</tr>
<tr>
<td>SCD21 – SDD21; (Differential-to-common mode conversion) minus (Differential insertion loss)</td>
<td>Meets SAS2.1 limit line: < -10 dB up to 6 GHz</td>
<td>SAS-2.1 rev 07 sections 5.5.3 and Annex D.10</td>
<td>PASS</td>
</tr>
<tr>
<td>Near End Crosstalk (NEXT)</td>
<td>Meets SAS2.1 limit line: < -26 dB up to 6 GHz</td>
<td>SAS-2.1 rev 07 section 5.5.3</td>
<td>PASS</td>
</tr>
<tr>
<td>BER channel simulation (Stateye)</td>
<td>Minimum eye height : 84 mV (P-P) Maximum total jitter: 0.64 UI</td>
<td>SAS-2.1 rev 07 section 5.5.5</td>
<td>PASS</td>
</tr>
</tbody>
</table>
5.0 Testing
Test methods are based upon SAS-2.1 (T10/2125-D revision 07)

5.1 General

Visual (Appearance) — EIA-364-18A

Purpose
The purpose of this test is to visually examine and dimensionally inspect the connector in order to determine whether the cable assembly conforms to the applicable specification and detail documents not covered by performance requirements.

Test Method
The examination shall be made in accordance with EIA-364-18A. The visual examination shall include inspection of the following features as a minimum: craftsmanship, marking, materials, finish, standards, design and construction. The dimensional inspection shall be a check for compliance with the outline drawings of the detail specification.

5.2 Signal Integrity

Differential insertion loss, SDD21

Purpose
The purpose of this test is to verify the differential insertion loss (SDD21) meets the requirements specified in SAS-2.1.

Test Method
Differential insertion loss (SDD21) has been measured in accordance with standard SAS-2.1 rev 07.
Differential reflection loss, SDD22

Purpose

The purpose of this test is to verify the differential reflection loss (SDD22) meets the requirements specified in SAS-2.1.

Test Method

Differential reflection loss (SDD22) has been measured in accordance with standard SAS-2.1 rev 07.
Differential-to-common mode conversion, SCD21

Purpose
The purpose of this test is to verify the differential-to-common mode conversion (SCD21) meets the requirements specified in SAS-2.1.

Test Method
Differential-to-common mode conversion (SCD21) has been measured in accordance with standard SAS-2.1 rev 07.
Differential to common mode reflection, SCD22

Purpose
The purpose of this test is to verify the differential to common mode reflection (SCD22) meets the requirements specified in SAS-2.1.

Test Method
Differential to common mode reflection (SCD22) has been measured in accordance with standard SAS-2.1 rev 07.
SCD21 – SDD21

Purpose
The purpose of this test is to verify the SCD21-SDD21 calculation meets the requirements specified in SAS-2.1.

Test Method
The components of the SCD21-SDD21 calculation, differential to common mode conversion (SCD21) and differential insertion loss (SDD21), have been measured in accordance with standard SAS-2.1 rev 07.
Near End Crosstalk (NEXT)

Purpose
The purpose of this test is to verify the near end crosstalk (NEXT) meets the requirements specified in SAS-2.1.

Test Method
Near end crosstalk (NEXT) has been measured in accordance with standard SAS-2.1 rev 07.

3M Electronic Solutions Division
6801 River Place Blvd.
Austin, TX 78726-9000
http://www.3Mconnectors.com
BER channel simulation

Purpose
The purpose of this test is to verify the BER channel simulation meets the requirements specified in SAS-2.1.

Test Method
The BER channel simulation has been conducted in accordance with standard SAS-2.1 rev 07.

1 meter (30 AWG)
Eye height: 492 mV - **PASS** (> 0.84 mV)
Jitter: 0.27 UI - **PASS** (< 0.64 UI)

3 meter (28 AWG)

Eye height: 360 mV - **PASS** (> 0.84 mV)
Jitter: 0.30 UI - **PASS** (< 0.64 UI)

5 meter (28 AWG)
Eye height: 228 mV - PASS (> 0.84 mV)
Jitter: 0.37 UI - PASS (< 0.64 UI)
Important Notice
All statements, technical information, and recommendations related to 3M’s products are based on information believed to be reliable, but the accuracy or completeness is not guaranteed. Before using this product, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. Any statements related to the product which are not contained in 3M’s current publications, or any contrary statements contained on your purchase order shall have no force or effect unless expressly agreed upon, in writing, by an authorized officer of 3M.

Warranty; Limited Remedy; Limited Liability.

This product will be free from defects in material and manufacture for a period of 90 days from the time of purchase. 3M MAKES NO OTHER WARRANTIES INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. If this product is defective within the warranty period stated above, your exclusive remedy shall be, at 3M’s option, to replace or repair the 3M product or refund the purchase price of the 3M product. Except where prohibited by law, 3M will not be liable for any indirect, special, incidental or consequential loss or damage arising from this 3M product, regardless of the legal theory asserted.