Anchorage Redefined
Jason B. Cope, DDS, PhD

“In recent years, a number of Temporary Anchorage Devices (TADs), primarily in the form of miniscrew implants, have hit the market. When you, the clinician, begin to evaluate the many systems available for use in your practice, there are several things you should consider before making a decision on which system to purchase. For instance, how many different types of screws must you inventory based on different head designs, screw lengths, transmucosal collar lengths and threaded diameters? Does the system require an incision and flap and/or a pilot hole? Is gingival overgrowth a problem?

Simplicity of use and integration into the daily orthodontic practice were our primary goals during the design process of the Unitek Temporary Anchorage Device. With those goals in mind, we developed only one head design and one diameter with three different lengths. Three different lengths are necessary to facilitate placement in different locations within the oral cavity based on gingival thickness and bony depth. However, don’t let the simplicity of design and only three Unitek TADs to choose from mislead you. The ingenious O-Ball head of the Unitek TAD makes the system universally adaptable; it serves as one component in a ball and socket joint. The other is the 3M™ Unitek™ Temporary Anchorage Device O-Cap, a stainless steel cap with an internal 3M™ Unitek™ Temporary Anchorage Device O-Ring that locks in place around the O-Ball. The cap can be placed and removed with little effort, but is stable. The beauty of the Unitek TAD O-Cap is that, if the clinical situation warrants, it can be placed to suppress the soft tissues and prevent mucosal overgrowth. We also placed a groove in the Unitek TAD O-Cap, so that ligatures, elastics or power chain can be attached directly to it.

We have also taken the bite out of the placement procedure – no incisions, no flap, and no pilot hole! In alveolar or mobile mucosa, the index finger and thumb are used to stretch the soft tissue so that the mucosa does not wrap around the Unitek TAD threads during insertion. This is not necessary in keratinized gingiva.

Moreover, no pilot hole is required with the Unitek TAD. We designed the Unitek TAD so that it is self-drilling and self-tapping. There are two different types of self-tapping screws – thread-forming and thread-cutting. The Unitek TAD is thread-forming: it compresses bone in and around the screw threads during advancement instead of cutting and removing bone common with other screws. Thread-cutting screws, on the other hand, have a notch cut out of the screw apex that cuts or taps the bone during screw placement. This feature tends to weaken screws smaller
than about 1.6 mm in diameter, thereby necessitating a pilot hole. In lieu of a thread-cutting notch, we tapered the apical 4 mm of the Unitek TAD from 0.3 mm to the full 1.8 mm, which compresses the bone around the screw during auto-advancement instead of cutting/removing bone as is common with thread-cutting screws.

Once the Unitek TAD is gently screwed into place, it can be loaded immediately with a light force; there is no reason to wait for the soft tissues or bone to heal. Neither is traumatized by this non-surgical procedure, which rarely even requires ibuprofen administration. Once in place, the Unitek TAD can be attached to via the grooved neck, the 0.030” holes in the O-Ball or the groove in the Unitek TAD O-Cap. In addition to the standard methods of attachment, hooks can be inserted through the 0.030” holes.

It will become readily apparent to orthodontists who investigate this product line that the Unitek TAD system is extremely simple to understand, simple to inventory and most importantly, simple to use. You’ll be glad you chose the Unitek TAD…it truly is as simple as fitting a headgear.

The Unitek Temporary Anchorage Device System:
Intelligent by design…for the thinking Orthodontist.”

Jason B. Cope, DDS, PhD

Comprehensive Orthodontic Continuing Education
www.CopestheticCE.com
Editor, OrthoTADs: The Clinical Guide & Atlas
www.UnderDogMedia.us
Diplomate, American Board of Orthodontics
Adj Assist Prof – Orthodontics
St. Louis University
Table of Contents

Introduction: Anchorage Redefined ...2

Unitek Temporary Anchorage Device ..5

Unitek Temporary Anchorage Device Quick Use Guide .. 6
 TAD Placement Technique...7
 Unitek Temporary Anchorage Device Placement Checklist .. 9
 Uses of the Unitek Temporary Anchorage Device O-Cap ..10
 Loading Protocol for Unitek Temporary Anchorage Device ...10
 Post-Placement Instructions ...11
 Removal Protocol for Unitek Temporary Anchorage Device...11
 Diagnostic Protocol for Unitek Temporary Anchorage Device ...11

Orthodontic Uses for the Unitek Temporary Anchorage Device ...13

Before and After Photos – Unitek Temporary Anchorage Device..14

3M acknowledges the contribution of Dr. Jason B. Cope in the design of the Unitek Temporary Anchorage Device (TAD), Unitek TAD Constant Force Springs, Unitek TAD Contra Angle Driver, Unitek TAD O-Cap and aTADchments™.
Unitek Temporary Anchorage Device Lengths

<table>
<thead>
<tr>
<th>Implant Length</th>
<th>Tapered Length</th>
<th>1.8 mm Diameter Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mm</td>
<td>4 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>8 mm</td>
<td>4 mm</td>
<td>4 mm</td>
</tr>
<tr>
<td>10 mm</td>
<td>4 mm</td>
<td>6 mm</td>
</tr>
</tbody>
</table>

Common Locations for each Unitek Temporary Anchorage Device

<table>
<thead>
<tr>
<th>Length</th>
<th>Implant Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mm</td>
<td>Facial surface maxillary/mandibular alveolar ridge mesial to 1st molar, maxillary subANS region, mandibular symphysis</td>
</tr>
<tr>
<td>8 mm</td>
<td>Facial surface maxillary/mandibular alveolar ridge distal to 2nd premolar, parasagittal midpalate</td>
</tr>
<tr>
<td>10 mm</td>
<td>Maxillary tuberosity, zygomatic buttress, infrazygomatic crest or posterior lateral palate; mandibular ascending ramus, retromolar region, external oblique ridge</td>
</tr>
</tbody>
</table>

This should only be used as a guide since soft tissue and bone thicknesses vary from patient to patient.

Maxillary Bone Locations

Mandibular Bone Locations

Placement locations for the Unitek Temporary Anchorage Device

<table>
<thead>
<tr>
<th>Maxilla</th>
<th>Mandible</th>
</tr>
</thead>
<tbody>
<tr>
<td>InfraZygomatic Crest</td>
<td>Ascending Ramus</td>
</tr>
<tr>
<td>SubANS</td>
<td>Retromolar Area</td>
</tr>
<tr>
<td>Alveolar Bone</td>
<td>External Oblique Ridge</td>
</tr>
<tr>
<td>Facial Surface</td>
<td>Alveolar Bone</td>
</tr>
<tr>
<td>Palatal Surface</td>
<td>Facial Surface</td>
</tr>
<tr>
<td>Palatal Bone</td>
<td>Lingual Surface</td>
</tr>
<tr>
<td>Anterolateral</td>
<td>Symphysis</td>
</tr>
<tr>
<td>Parasagittal Mid palate</td>
<td></td>
</tr>
<tr>
<td>Midpalatal Suture (Adults)</td>
<td></td>
</tr>
</tbody>
</table>
Quick Use Guide

1. Patient brushes teeth to remove plaque and debris
2. Patient rinses with 15 ml of 0.12% chlorhexidine gluconate for 30 seconds
3. Apply topical anesthetic
4. Mark insertion site on soft tissue
5. Perform bone sounding with periodontal probe to measure soft tissue thickness
6. Determine Unitek Temporary Anchorage Device (TAD) length based on:
 - Soft tissue thickness
 - Bone thickness
7. Insert Unitek TAD with the 3M™ Unitek™ TAD Straight Driver or 3M™ Unitek™ TAD Contra Angle Driver
8. Load by attaching directly to 0.030" holes, implant neck or groove in Unitek TAD O-Cap
TAD Placement Technique Guide

Step 1. Patient brushes teeth to remove plaque and debris
Chlorhexidine interacts with detergents and fluoride in toothpaste. Therefore, the patient should rinse vigorously with water after brushing and before rinsing with Chlorhexidine, or use no toothpaste at all.

Step 2. Patient rinses with 15 ml of 0.12% chlorhexidine gluconate for 30 seconds
Chlorhexidine has been shown to provide antimicrobial activity during rinsing.

Step 3. Apply topical anesthetic (Fig. 1)
Use a high-strength topical anesthetic that provides profound soft tissue and periosteal anesthesia but has limited anesthetic effect on bone and tooth roots via absorption. So, similar to extraction of teeth, the patient should feel pressure, but not pain, unless the periodontal ligament (PDL) or tooth root is contacted.

Fig. 1A-1B: Application of topical anesthetic

Step 4. Mark insertion site on soft tissue
Determine the Unitek TAD insertion site. Several methods are available to do this. It is important to place the Unitek TAD in locations with a minimum of 0.5-1.0 mm of bone around the circumference of the Unitek TAD.
- The simplest method is to use a panoramic or periapical X-ray with direct clinical visualization to identify the site (Fig. 2)

Step 5. Perform bone sounding with periodontal probe to measure soft tissue thickness
A marked periodontal probe with an endodontic stopper is probed through the soft tissue in the planned Unitek Temporary Anchorage Device (TAD) location until bone is contacted. At this point, the stopper rests on the soft tissue. The probe is then removed and the soft tissue thickness is recorded from the periodontal probe (Fig. 4).

Fig. 2: Example of an X-ray with direct clinical visualization

Fig. 3A-3C: Curved end of an explorer

Fig. 4

[3M Logo]
Step 6. Determine Unitek TAD length based on:

- Soft tissue thickness
- Bone thickness

The Unitek TAD length is determined more by the soft tissue thickness than by the bony thickness (outer cortex plus medullary bone up to but not including contralateral cortex). The most critical part of the threaded body is the part that traverses the outer cortex – this should be the full 1.8 mm diameter body, not the tapered body.

If the soft tissue is greater than 1.5 mm thick, a longer Unitek TAD is required. For example, the 6 mm Unitek TAD has 4 mm of taper and 2 mm of the full 1.8 mm diameter threaded body. The most important factor is that the 2 mm of the full 1.8 mm diameter should reside in the cortex. So, if the soft tissue is more than 1.5 mm, then the neck of the Unitek TAD will be too close to the soft tissue or possibly even submerged. Therefore, a longer Unitek TAD should be used. It is not a problem to have part of the threaded portion traverse the soft tissue as long as the part of the Unitek TAD that resides in the outer cortex is not tapered (Fig. 5).

Step 7. Insert Implant with the Unitek TAD Straight Driver or Unitek TAD Contra Angle Driver

Remove the white cap containing the Unitek Temporary Anchorage Device (TAD) from the sterile vial. While holding the white cap in one hand, either the Unitek TAD Straight Driver or Unitek TAD Contra Angle Driver is placed over the O-Ball and around the square head so that the Unitek TAD O-Ring tightly holds the Unitek TAD (Fig 6). The Unitek TAD is unscrewed from the white cap and ready for placement.

The Unitek TAD Straight Driver is applicable to most locations. The Unitek TAD Contra Angle Driver is a contra-angle screw driver that is usually more applicable in the retromolar regions for implants placed vertically, in the anterior palate for implants placed vertically and in the posterior palate for implants placed laterally.

The tip of the Unitek TAD should be placed against the bone, at the proper orientation and rotated clockwise into the bone with firm seating pressure at the base of the handle as the Unitek TAD Straight Driver is rotated with the fingers. The orientation should be verified from...
the lateral and occlusal aspects (Fig. 7). If the Unitek TAD Contra Angle Driver is used, the handle is twisted clockwise into the bone with firm seating pressure applied with the palm of the contralateral hand (Fig. 8). The Unitek TAD should be inserted until the polished collar engages outer cortex or the square head penetrates the soft tissue by no more than 0.5 mm (Fig. 9). At the end of Unitek TAD placement, the inferior aspect of the polished transmucosal collar should contact the bone surface with the entire O-Ball, neck and part of the square head located supramucosally.

As the Unitek TAD is screwed into the bone, the resistance of the bone will most likely begin to increase. This occurs more often in the mandible as compared to the maxilla. It is important to recall that bone is viscoelastic and will expand in response to internal pressure. Therefore, when placing a Unitek Temporary Anchorage Device (TAD) in dense bone (usually posterior mandible), it may be appropriate to screw the Unitek TAD from \(\frac{1}{2} \) to 2 complete revolutions until pressure increases considerably, then stop for 10 to 20 seconds, allowing the bone to expand around the Unitek TAD before continuing. This respite should be repeated as often as necessary, and is usually only required for the range between 2.0 to 4.0 mm of the tapered body. After the tapered body is through the cortex and the full 1.8 mm diameter body begins to enter the bone, the bone is no longer required to expand to accommodate the increasing diameter; therefore the pressure remains relatively constant and respites are usually no longer required.

Since the primary stability of the Unitek TAD comes from the cortex, it is also important to have the entire cortex traversed by the 1.8 mm diameter body with the tapered end in medullary bone. The Unitek TAD must be stable upon initial placement or should be placed in an alternate location.

<table>
<thead>
<tr>
<th>Range of bone expansion during Unitek Temporary Anchorage Device (TAD) placement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2 mm</td>
<td>Usually no respites required</td>
</tr>
<tr>
<td>2-4 mm</td>
<td>Respites sometimes required in dense bone</td>
</tr>
<tr>
<td>4 mm</td>
<td>Usually no respites required</td>
</tr>
</tbody>
</table>

Unitek Temporary Anchorage Device (TAD) Placement Checklist:
- The O-Ball, neck and at least half of the square head should be supramucosal
- The 1.8 mm diameter body should be in the cortex
- The tapered apex should be in the medullary bone
- The tapered apex should not touch the contralateral cortex
- The variable is primarily in the soft tissue depth
Uses of the Unitek Temporary Anchorage Device (TAD) O-Cap

With some miniscrew implant systems, the alveolar/mobile mucosa will grow over the head of the implant. This, however, is rarely a problem with the innovative design of the Unitek TAD.

There are 3 reasons for placing the Unitek TAD O-Cap:

• To suppress the alveolar/mobile mucosa and prevent soft tissue overgrowth of the O-Ball (Fig. 10A).

• When in place, the groove on the Unitek TAD O-Cap is 1.0 mm higher and 1.5 mm lateral to the Unitek TAD neck, which in certain cases is beneficial to prevent the orthodontic attachment mechanics from impinging the soft tissue (Fig. 10B).

• Since the O-Ball is so small, it may irritate some patients in certain circumstances (i.e., when placed laterally in the alveolar bone anteriorly). In these cases, because the Unitek TAD O-Cap is larger, it makes the emergence profile feel smoother to the patient (Fig. 10C).

Loading Protocol for Unitek Temporary Anchorage Device

Step 8. Load by attaching directly to 0.030” holes, implant neck or Unitek TAD O-Cap

It is important to note that it is not necessary to remove a Unitek TAD during loading (if in place more than a month) with subtle mobility (perio mobility score of 1). As long as the Unitek TAD is clinically stable and usable with no frank mobility, there is no need for removal.

After the Unitek TAD is seated, it can be loaded immediately. There is no need to wait days or even weeks to load for either soft tissue or bony healing. Attachment mechanics can be placed either directly through the 0.030” holes (Fig. 11A), around the implant neck (Fig. 11B), around a cotter pin placed through the 0.030” holes (Fig. 11C), or around the groove in Unitek TAD O-Cap (Fig. 11D). Postoperative pain is negligible.
Post-Placement Instructions:

- Assess the need for pain management and prescribe treatment accordingly.
- Rinse with 15 ml of 0.12% Chlorhexidine Gluconate for 30 seconds twice a day for 10 days
- After 10 days, rinse with 15 ml of 0.12% Chlorhexidine Gluconate for 30 seconds as needed for peri-implant erythema
- Avoid tongue or finger contact with the Unitek TAD
- Do not eat anything hard, chewy, or sticky in the vicinity of the Unitek TAD
- Call if Unitek TAD or orthodontic attachments become loose or if there are any concerns about Unitek TAD stability

Removal Protocol for Unitek Temporary Anchorage Device (TAD)

A Unitek TAD’s removal is indicated after its use for anchorage/tooth movement is complete. In certain cases of molar intrusion for openbite correction, it may be desirable to leave the unloaded Unitek TAD in place for several months after active use in the event that dental relapse occurs.

Unitek TAD removal occurs without topical or local anesthetic by simply unscrewing the Unitek TAD. Topical anesthetic may be used in cases where the soft tissue has slightly overgrown the square head in order to anesthetize the superficial soft tissues as they are compressed during square head engagement for Unitek TAD removal.

No pain is associated with the Unitek TAD removal; therefore, analgesics are not needed, and no sutures warranted (Fig. 12A). The soft tissue and bone heal uneventfully within 3 to 7 days (Fig. 12B).

Diagnostic Protocol for Unitek Temporary Anchorage Device

The diagnostic records required for treatment planning a Unitek Temporary Anchorage Device (TAD) placement are identical to what an orthodontist usually obtains to reach an orthodontic diagnosis and formulate a treatment plan.

- Clinical exam – allows inspection and palpation of the periodontal tissues, keratinized gingiva and alveolar mucosa, and frena attachments in the region of the planned Unitek TAD placement, as well as in the line of attachment mechanics. The patient should be moved through functional movements and the lips and cheeks manually moved to determine the extent of frena attachment/displacement.
- Extraoral photos – allow the clinician to evaluate the patient’s profile and lip strain in combination with the lateral cephalometric X-ray to determine the need for extraction and anchorage requirements (Fig. 13).
• Intra-Oral photos – allow the clinician to determine keratinized tissue dimensions, mucogingival junction heights and frena attachments (Fig. 14).

• Panoramic X-ray – a good screening X-ray to determine bone height, relative density and relationships between Unitek TAD size and adjacent anatomic structures. It can often be used without a periapical X-ray when interradicular spaces are fairly large (Fig. 17).

• Orthodontic casts – allow the clinician to determine keratinized tissue dimensions, mucogingival junction heights and frena attachments. In combination with the panoramic and periapical X-rays, the clinician can determine the crestal bone heights relative to the gingival margins or occlusal surfaces (Fig. 15).

• Periapical X-ray – a more specific X-ray to determine the mesiodistal interradicular and intraradicular space and the coronoapical availability of bone stock (Fig. 18).

• Lateral cephalometric X-ray – allows the clinician to evaluate the patient’s profile and lip strain in combination with the extraoral photos to determine the need for extraction and anchorage requirements. It also allows the determination of palatal bone thickness and incisor root proximity relative to the symphysis (Fig. 16).

• Cone Beam CT – a three-dimensional X-ray technique that allows the most accurate evaluation of bone morphology and density as well as the visualization of local anatomic structures.
Common Orthodontic Uses for the Unitek Temporary Anchorage Device (TAD)

- Traditional malocclusions in need of additional or maximum anchorage, such as in space closure (retraction of anterior teeth or protraction of posterior teeth)
- Preprosthetic tooth movement
- Molar uprighting
- Intrusion of super-erupted teeth
- Distalization of Class II or Class III end-on malocclusions to ideal Class I occlusions
- Skeletal malocclusions unable or unwilling to undergo surgical treatment
- Occlusal cants
- Maxillomandibular fixation during oral and maxillofacial surgery
- Due to patient variability, the amount of force will vary depending upon the patient needs. It is not recommended to apply forces to the long axis of the implant. To achieve maximum results, the Unitek Temporary Anchorage Device (TAD) should be placed where the load is perpendicular to the long axis (90° angle) of implant.
- Any orthodontic force module may be used as long as the total forces applied do not fall outside the recommended forces/applications for the force module. The implant should withstand forces up to 300 grams without failure.
Before and After Photos
Unitek Temporary Anchorage Device (TAD)

Incisor Intrusion

Fig. 19A-19B: Before
Fig. 20A-20B: After 4.5 months

Posterior Protraction

Fig. 21A-21B: Before
Fig. 22A-22B: After 3 months

Posterior Intrusion

Fig. 23A-23D: Before
Before and After Photos
Unitek Temporary Anchorage Device (TAD)

Posterior Intrusion

Molar Intrusion/Uprighting

Anterior en Masse Retraction

All photos courtesy of Dr. Jason B. Cope
Dr. Jason B. Cope got an early introduction to orthodontics, beginning his informal education at 13 years of age by making retainers and grinding study models in his father’s lab. By age 15, he was helping his father as an orthodontic chair-side assistant. He now runs a private orthodontic practice in Dallas, Texas, where he treats patients three days a week while also developing new orthodontic products, lecture materials, and educational aides, which are available at www.CopestheticCE.com.

A recognized innovator in the field of orthodontics, Dr. Cope has recently focused on developing clinical protocols and products to enhance Temporary Anchorage Device (TAD) use, particularly Miniscrew Implants (MSIs), the most popular subcategory of TADs. In 2003, he partnered with IMTEC Corp. to develop the Ortho Implant, one of the first U.S. manufactured orthodontic miniscrew implants. Since then, he developed the Cope Placement Protocol™, the first minimally invasive protocol to utilize drill-free MSI placement with topical anesthetic only, a patented life-like triple-density typodont for teaching MSI placement methods, and several other TAD protocols and products relating to openbite closure and Class II distalization.

A prolific author and lecturer, Dr. Cope has published eight non peer-reviewed and 19 peer-reviewed journal articles, 37 book chapters, a research handbook, and a 400-page dissertation. He also co-edited a multimedia CD-ROM and a 600-page textbook, Craniofacial Distraction Osteogenesis, and self-published a 500-page textbook entitled OrthoTADs: The Clinical Guide and Atlas, available exclusively at www.UnderDogMedia.us. He has given over 250 lectures nationally and internationally, and has been involved in the development of several educational websites.

Dr. Cope is an ad hoc reviewer for the American Journal of Orthodontics and Dentofacial Orthopedics, the World Journal of Orthodontics, The Angle Orthodontist, the Journal of Clinical Orthodontics, the Journal of Oral and Maxillofacial Surgery, the Journal of Dental Research, Archives in Oral Biology, and was the guest editor for the March 2005 issue of Seminars In Orthodontics on OrthoTADs.

Dr. Cope received his DDS, Orthodontic Certificate, and PhD in craniofacial bone biology from the Baylor College of Dentistry. He has been a researcher on over 20 funded research projects, and has served as a committee member on numerous orthodontic graduate student thesis projects. He also serves as an adjunct associate professor in the Department of Graduate Orthodontics at St. Louis University, is a visiting professor at several universities, and has lectured to graduate students at 11 universities in North America, Central America, South America, and Australia.