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Abstract
The discharge of most halocarbon clean extinguishing agent 
systems is characterized by a rapid drop in room pressure followed 
by a positive pressure spike. It is important that these peak pressures 
do not damage the protected enclosure. This paper reviews the 
existing data on clean agent system discharge pressures and the 
factors influencing the magnitude of peak positive and negative 
pressures, as well as the pressure load limits for enclosures of  
typical construction.

Introduction
When designing a clean agent fire protection system, it is important 
to consider the potential for any discharge to reduce the structural 
integrity of a protected space. The peak positive and negative 
enclosure pressures that characterize the discharge of halocarbon 
fire suppression systems could damage the structural members – the 
walling, studs and windows – of the protected space, if installed 
improperly.1 If these structural members are damaged during the 
system discharge, there is no longer a guarantee that the protected 
enclosure will retain the desired concentration of agent long enough 
for sufficient suppression of the fire. It is therefore necessary to 
understand existing system discharge peak pressure data and the 
factors influencing the magnitude of both positive and negative peak 
pressures and how they compare to internal pressure load limits for 
typical construction types.

Clean Agent System Discharge Pressures
The distinctive transient pressure dynamics of a clean agent fire 
suppression system discharge differ depending on agent type. 
Inert gas clean agents and one halocarbon clean agent, HFC-
23, have high vapor pressures and are characterized by positive 
enclosure pressures generated upon system discharge. Low pressure 
halocarbons, however, are characterized by an initial drop in 
enclosure pressure followed by an eventual transition to positive 
enclosure pressures. The initial negative pressure spike is the result 
of the cooling due to the agent’s high heat capacity where sensible 
heat is absorbed during rapid vaporization during discharge. 

The positive pressure spike that follows is the result of the relatively 
rapid introduction of the gaseous agent and propellant mass into 
the fixed enclosure volume. The magnitude of the positive and 
negative pressure spikes varies from agent to agent. Samples of 
enclosure pressures during system discharges are illustrated in 
Figure 1, which displays the enclosure pressures during discharges 
of three prominent halocarbon clean agents and one inert gas clean 
agent. Figure 1 shows the contrast between the negative to positive 
pressure swing for halocarbon system discharges and the single 
large positive pressure spike typical for inert gases.

The results reported in Figure 1 were determined during testing 
conducted by the room integrity technical subcommittee to  
the NFPA 2001 Committee in a single enclosure and generated 
under comparable conditions. Maximum negative and positive 
pressure values from this testing are given in Table 1. At each  
agent’s minimum design concentration, with similar leakage  
areas, HFC-227ea tended to yield the greatest positive pressures.  
FK-5-1-12 produced the greatest negative pressures and the smallest 
positive pressures. HFC-125 tended to have the smallest negative 
pressures and the smallest magnitude transition from negative to 
positive pressure.

Agent choice, however, is only one of many factors that can impact 
the magnitude of the negative and positive pressure peaks within the 
protected space. Agent concentration, wall construction, enclosure 
leakage area and location, fire size, humidity and retention time are 
other important determinants of the overall pressure dynamics.

Room Overpressure Limits
Understanding the structural pressure load limits of the enclosure 
is important when designing clean agent fire suppression systems. 
These internal enclosure pressure load limits vary with the 
construction type and materials. A steel studded wall, for example, 
is sturdier than a wood studded wall, but not as strong as a brick 
wall. As a general rule, however, non-load bearing walls will be 
the weakest walls in any given structure. Therefore, non-load 
bearing wall strengths are considered the threshold for maximum 
discharge pressures in the design process of clean agent systems. 
One commonly quoted pressure limit for clean agent systems is 
a 5 psf (239pa) minimum load requirement for non-load bearing 
walls given in the International Building Code (IBC), established to 
address normal variation in continuous room conditions.3 This value 
is often exceeded as evidenced in comparative testing and without 
apparent problems or damage reported in practice. 

Preserving room integrity during clean agent discharges
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HFC-227ea (310 cm2 Leakage)

HFC-125 (315 cm2 Leakage)

FK-5-1-12 (315 cm2 Leakage)

IG-541 (590 cm2 Leakage)

Agent Max Negative PSF/Pa Max Positive PSF/Pa
FK-5-1-12 22.0/1053 3.0/144

HFC-125 6.6/316 8.4/402

HFC-227ea 18.6/891 7.5/359

Table 1 – Representative Peak Pressure Values

Figure 1 –  Ambient Enclosure Pressures for Various Clean Agent  
System Discharges2
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For example, in a typical hazard with a 10'-0"(3.05m) high ceiling, a 
hazard height 75% of the room height designed to a 10 minute hold 
time in accordance with NFPA 2001 and using design predictions 
determined from conventional room integrity modeling, peak room 
pressure predictions for both inert gas and halocarbon systems 
exceed that limit in most cases. This is assuming a worst case 
retention scenario where there is 50% of the leakage high and 50% 
of the leakage low in the room. In practice, there exists more leakage 
high than below, making it easier to achieve hold time, thus reducing 
resultant peak pressure.4

Dynamic pressure load limits for carbon dioxide suppression 
systems, whose pressure dynamics are similar to an inert gas, are 
given in the NFPA 12 Standard on Carbon Dioxide Extinguishing 
Systems for various construction types. NFPA 12 explains that relief 
venting, in the form of doors, windows and dampeners, exists in 
almost all enclosures, and although it cannot be easily quantified, 
presents sufficient venting for pressures up to 25 psf for ‘light’ 
construction and 50 psf for ‘normal’ construction.5

Attempts have also been made to model the ambient pressure load 
limits of studded walls based on the stud spacing and the yield or 
tensile strength of the stud material. This model predicts maximum 
pressure loads of 7 to 14 psf for 2 × 4 wood stud walls, depending 
on stud spacing and assumes that the entire pressure load will be 
carried by the studs, with no deformation or failure of the actual 
wallboard material.6

Existing testing has provided a range of peak pressures that can 
be expected during discharge of clean agent systems. Systems 
for every agent have demonstrated capability to generate peak 
pressures greater than the commonly accepted 5 psf value given 
in the IBC. The fact is, in acceptance testing, pressurization test 
equipment is often used to pressurize a protected space to 10 psf 
or more to demonstrate enclosure strength.  Few room failures due 
to clean agent discharge pressures have been reported and only in 
extenuating circumstances.

Conclusions
Predicting exact peak pressure values of a given clean agent fire 
suppression system discharge is extremely difficult, with many 
factors influencing the enclosure pressure dynamics. Some factors, 
such as agent choice and concentration, wall construction, relative 
humidity, and enclosure leakage (to an extent), can be controlled. 
The uncontrollable factors of fire size and unforeseen leakages, 
however, have an effect, and the magnitude of the negative and 
positive pressure spikes cannot be predicted with confidence.  
Industry efforts continue to further define these and other 
parameters, endeavoring to achieve more accurate prediction of 
pressure and hold time.

The low five (5) psf IBC static pressure load limit is quite often 
exceeded in practice when installing clean agent systems. Such 
anecdotal expert experience in the field as well as reference of 
pressure limits given in gaseous standards such as NFPA 12 for 
carbon dioxide extinguishing systems may be reasonable pressure 
limits to apply to clean agent systems.
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