#181–Recommended use of the 3M™ CBRN CAP 1 Canister RBE-40 against Various Military and Industrial Chemical Agents

Published: October, 2007

3M’s RBE-40 CBRN CAP 1 canister has been tested and certified under the NIOSH CBRN protocol and found to be effective against a number of different chemical warfare agents and industrial chemicals (see table and footnotes on the following page). The canister contains a high efficiency (HE) filter to remove solid and liquid aerosols including biological and radiological particles. It also contains activated and impregnated carbon to absorb or react with gases and liquid vapors.

Tight fitting powered air purifying respirators (PAPR) can only be used when sufficient oxygen is present and when the contaminant and concentration are known and below Immediately Dangerous to Life or Health (IDLH) limits. The maximum use concentration (MUC) in which a tight fitting PAPR can be utilized is the product of the assigned protection factor (APF = 1000) multiplied by the airborne exposure limit (such as TLV®). This number must be lower than the IDLH, otherwise the IDLH becomes the MUC (see last 2 columns). Because it has a canister approval, the RBE-40 CBRN CAP 1 may be used to escape from environments greater than IDLH as long as adequate oxygen is present.

In the United States, OSHA states in their standard for Hazardous Waste Operations and Emergency Response (HAZWOPER), 29 CFR 1910.120, that Level C personal protective equipment (including air purifying respirators) may only be used in areas where lesser levels of skin and respiratory protection are required. Respirators help reduce exposure to certain airborne contaminants, but do not eliminate the risk of contracting disease or infection.

The canister must be replaced in accordance with an established change schedule or earlier if smell, taste or irritation from contaminants is detected. If a change schedule cannot be developed, atmosphere supplying respirators are required. The actual service life of the canister will depend upon the specific type, volatility and concentration of the contaminants; and environmental conditions such as humidity and temperature. Data in the table below may serve as a starting point for determining a change schedule. The minimum test times listed in the table are only the minimum required duration under the test conditions; the canister may last longer or shorter under actual use conditions.

3M™ Service Life Software may also be helpful in determining a change schedule (please see the 3M OH&ESD web site at http://www.mmm.com/OccSafety/). The software includes data for many industrial chemicals, and users may calculate service life for other organic vapors (such as warfare agents) if the chemical properties of these contaminants are known.

As part of the NIOSH CBRN approval, the canister is attached to a PAPR with a tight fitting full face piece and the entire respirator is tested against warfare agent permeation. The assembled system must have a test life of at least 8 hours against 50mg/m³ (7.55 ppm) distilled sulfur mustard (HD) vapor or 210mg/m³ (36 ppm) Sarin (GB) vapor. It must also have a test life of at least 2 hours against 0.43ml of HD liquid.

In the U.S., OSHA does not require change schedules for particulate filters. The canister must be replaced if it is damaged or the PAPR fails minimum flow of 4 cfm.
Technical Data Bulletin #181—Recommended use of the 3M™ CBRN CAP 1 Canister RBE-40 against Various Military and Industrial Chemical Agents

<table>
<thead>
<tr>
<th>Challenge Agent</th>
<th>Challenge Concentration (ppm)</th>
<th>Testing Relative Humidity (%)</th>
<th>Maximum Allowed Breakthrough (ppm)</th>
<th>Minimum Test Time (min)</th>
<th>TLV®/IDLH® (ppm)</th>
<th>Maximum Use Concentration³ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia (NH₃)⁴</td>
<td>2,500</td>
<td>25 / 80</td>
<td>12.5</td>
<td>>15</td>
<td>25 / 500</td>
<td>500</td>
</tr>
<tr>
<td>Cyanogen Chloride (CK)⁴</td>
<td>300</td>
<td>25 / 80</td>
<td>2</td>
<td>>15</td>
<td>0.3⁶ / ND (118)⁶</td>
<td>118</td>
</tr>
<tr>
<td>Cyclohexane (Organic Vapors)⁴</td>
<td>2,600</td>
<td>25 / 80</td>
<td>10</td>
<td>>15</td>
<td>100 / 10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Formaldehyde (CH₂O)⁴</td>
<td>500</td>
<td>25 / 80</td>
<td>1.0</td>
<td>>15</td>
<td>0.3⁶ / 30</td>
<td>30</td>
</tr>
<tr>
<td>Hydrogen Cyanide (AC)⁴</td>
<td>940</td>
<td>25 / 80</td>
<td>4.7⁷</td>
<td>>15</td>
<td>4.7⁶ / 50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Hydrogen Sulfide⁴</td>
<td>1,000</td>
<td>25 / 80</td>
<td>5.0</td>
<td>>15</td>
<td>10 / 300</td>
<td>300</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)⁴</td>
<td>200</td>
<td>25 / 80</td>
<td>1 ppm NO₂ or 25 ppm NO₃</td>
<td>>15</td>
<td>3 / 50</td>
<td>50</td>
</tr>
<tr>
<td>Particulates (HE)⁴</td>
<td>200mg total loading w/ 0.3um MMAD DOP particles</td>
<td>25 / 80</td>
<td><0.03%</td>
<td>2,400</td>
<td>10mg/m³ / ND</td>
<td>3mg/m³ / ND</td>
</tr>
<tr>
<td>Phosgene (CG)⁴</td>
<td>250</td>
<td>25 / 80</td>
<td>1.25</td>
<td>>15</td>
<td>0.1 / 2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Phosphine (PH)⁴</td>
<td>300</td>
<td>25 / 80</td>
<td>0.3</td>
<td>>15</td>
<td>0.3 / 200</td>
<td>200</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)⁴</td>
<td>1,500</td>
<td>25 / 80</td>
<td>5</td>
<td>>15</td>
<td>2 / 100</td>
<td>100</td>
</tr>
</tbody>
</table>

NA = Not applicable; ND = Not Determined; ppm = parts per million; mg/m³ = milligrams per cubic meter of air

1. TLV = Threshold Limit Value from the American Conference of Governmental Industrial Hygienists. ACGIH Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices, 2006.
2. IDLH = Immediately Dangerous to Life or Health limit. NIOSH Pocket Guide to Chemical Hazards, DHHS (NIOSH) Publication No. 90-177, 1990. Although newer IDLH values have been published, OSHA stated in a May 21, 1996 Memorandum that OSHA will use the older IDLH values while NIOSH conducts further study.
3. Assuming a Powered Air Purifying Respirator (PAPR) with a tight fitting full face piece and OSHA assigned Protection Factor of 1000. These values are 1000 times the TLV or the IDLH limit, whichever is lower.
4. Testing criteria from NIOSH Statement of Standard for Chemical, Biological, Radiological and Nuclear (CBRN) Powered Air-Purifying Respirators (PAPR), October 6, 2006. Flow rate is 115 lpm divided by the number of canisters (3).
5. C = Ceiling Limit refers to the concentration that should not be exceeded during any part of the working exposure without respiratory protection.
6. There is no actual IDLH value for CK. The NIOSH Pocket Guide to Chemical Hazards lists the value for “Cyanides as (CN)” as 50ppm, so multiply 50ppm by the MW of CK (61.47g/mole) and divide by the MW of CN (26.02g/mole).
7. Sum of HCN and CN₂.
8. Nitrogen dioxide breakthrough is monitored for both NO₂ and NO. The breakthrough is determined by which quantity, NO₂ or NO, reaches breakthrough first.
9. I = Inhalable particles, insoluble, low toxicity, not otherwise specified. See exposure limits for specific substances.
10. R = Respirable particles, insoluble, low toxicity, not otherwise specified. See exposure limits for specific substances.

For more information, please contact:

3M Occupational Health and Environmental Safety Division (OH&ESD)

In the U.S., contact:
Sales Assistance 1-800-896-4223
Technical Assistance 1-800-243-4630
Fax On Demand 1-800-646-1655
Website http://www.3M.com/OccSafety
For other 3M products 1-800-3M HELPS

In Canada, contact:
3M Canada Company, OH&ESD
P.O. Box 5757
London, Ontario N6A 4T1
Sales Assistance 1-800-265-1840, ext. 6137
Technical Assistance (Canada only) 1-800-267-4414
Fax On Demand 1-800-646-1655
Website http://www.3M.com/CA/OccSafety

Technical Assistance In Mexico
01-800-712-0646
5270-2255, 5270-2119 (Mexico City only)
Technical Assistance In Brazil
0800-132333
Fax On Demand O.U.S. Locations
1-651-732-6530

Occupational Health and Environmental Safety Division
3M Center, Building 235-2E-91
St. Paul, MN 55144-1000