Restructuring the Incentives in the Medicare Hospital Acquired Condition Reduction Program to Achieve Better Patient Outcomes

3M Clinical and Economic Research

Richard F. Averill, MS
Ronald E. Mills, PhD

May 2022
Table of Contents

Executive Summary ...2
Introduction: Hospital-Acquired Condition Reduction Program ...2
Inpatient Prospective Payment System ..3
 Lessons learned from IPPS ...3
Hospital Complication Avoidance Rate Evaluation (H-CARE) ...4
 Hospital Expected PPC Performance ...5
 H-CARE Payment Model ...6
 Comparison of HACRP and H-CARE ...6
Socioeconomic Status ..7
Data ..7
Simulating an H-CARE Payment System ...7
 H-CARE Payment Simulation by State ..8
 Impact of Patient Socioeconomic Status ...10
 Impact of Hospital Type ..10
Discussion ...11
Summary and Conclusions ..12
References ...13
Appendix A: Bibliography of Publicly Available Articles and Reports ...15
Executive Summary

The Centers for Medicare & Medicaid Services implemented the Medicare Hospital-Acquired Condition Reduction Program (HACRP) in October 2014 with the intent to provide hospitals with a financial incentive to reduce inpatient complications. HACRP has failed to meet this objective because it is based on a relatively small number of complications, has inadequate risk adjustment and can result in disproportionate payment penalties. This study proposes a restructuring of HACRP using a redesigned complication payment incentive model referred to as the Hospital Complication Avoidance Rate Evaluation or H-CARE. Developed based on lessons learned from the highly successful Medicare Inpatient Prospective Payment System (IPPS) and the Maryland Hospital Acquired Conditions (HMAC) complication payment incentive program, H-CARE can provide comprehensive, clinically credible, and actionable incentives for improving hospital inpatient complication performance. Unlike HACRP, the design of the H-CARE payment policy includes both payment bonuses and payment penalties.

Medicare fee-for-service claims data from 2018 was used to evaluate hospital complication performance and simulate an H-CARE payment system. Using the subset of hospitals with the best complication performance, a best practice complication norm was developed. Using the best practice complication norm to determine hospital performance and a 1% cap on hospital penalties and bonuses, the H-CARE simulation resulted in Medicare payment reductions that are roughly twice the payment reductions from HACRP. Two-thirds of hospitals received a payment penalty and one-third of hospitals received a payment bonus. No payment bias toward hospitals treating a disproportionate volume of Medicare patients from geographic areas that have a lower socioeconomic status was observed. However, higher than expected complication performance was observed in large hospitals with high management complexity.

Introduction: Hospital-Acquired Condition Reduction Program

In 2014, the Centers for Medicare & Medicaid Services (CMS) implemented the Hospital-Acquired Condition Reduction Program (HACRP) as a component of Medicare’s hospital Inpatient Prospective Payment System (IPPS). HACRP is intended to provide hospitals with the financial incentive to reduce inpatient complications. Under HACRP, hospital complication performance is based on five chart-abstracted measures of hospital associated infections, and claims-based measures for pressure ulcers, iatrogenic pneumothorax, in-hospital falls and selected post-operative complications (commonly referred to as Patient Safety Indicator (PSI) 90). CMS determines a composite score across these measures for each hospital. Neither the individual measures nor the composite score is risk adjusted for a hospital’s patient case mix. However, some of the individual measures are adjusted for a hospital’s practice pattern related to the use of ICU days and the length of time of catheter placements. CMS imposes a 1% reduction in Medicare IPPS payments on the worst-performing quartile of hospitals based on the HACRP composite score. The HACRP penalties vary across fiscal years but are generally in the $300-400 million range.

The narrow range of complications included in HACRP has resulted in disproportionate penalties for minor differences in performance.
With little evidence that HACRP has resulted in improved patient outcomes in the nearly eight years since its inception, health care researchers have raised significant concerns regarding the effectiveness of HACRP. The lack of adequate risk adjustment has led to disproportionate penalties for hospitals caring for socioeconomically disadvantaged patients and some types of hospitals such as teaching hospitals. The narrow range of complications included in HACRP has also resulted in disproportionate penalties for minor differences in performance.

This study proposes restructuring HACRP to address its current limitations. To provide hospitals with effective financial incentives to reduce inpatient complications, the proposed restructuring will be based on payment system design principles that were the foundation for the success of IPPS.

Inpatient Prospective Payment System

In 1984, facing the imminent insolvency of the Medicare Hospital Trust Fund, CMS implemented the Inpatient Prospective Payment System (IPPS). IPPS created the incentive for hospital efficiency by paying a prospective price for each type of patient using the Diagnosis Related Group (DRG) patient classification system. Although the IPPS implementation was budget neutral, Medicare annual expenditures for hospital care in 1990 were $18 billion lower than originally projected at the time of IPPS implementation, representing a 20% decrease in annual hospital Medicare expenditures (the equivalent of $37 billion in today’s dollars). IPPS has kept the Medicare Hospital Trust Fund solvent for nearly 40 years, demonstrating that well-designed payment incentives can lead to substantive and sustainable behavior changes that improve efficiency and quality. The lessons learned from the success of IPPS can be applied to any incentive-based payment system. Unfortunately, the design of HACRP fails to adhere to these key lessons.

Lessons Learned from IPPS

The IPPS financial incentive for efficiency, created by a DRG prospective price combined with the management approach inherent in a DRG unit of payment, revolutionized how hospitals were managed. CMS has observed that the success of any payment system reform that is predicated on providing incentives for performance improvement is “almost totally dependent on the effectiveness with which the incentives are communicated.” Thus, the language value of DRGs was key to the success of IPPS. DRGs created a language that linked the clinical and financial aspects of care, thereby enabling the effective communication of cost containment incentives across the entire hospital. The easily understood “product with a price” design, communicated in a clinically credible manner (the DRGs), was the foundation for the success of IPPS.

For HACRP to be consistent with the underlying design principles of IPPS, any redesign must meet four essential requirements:

- **Clinically credible and actionable**: The determination of complications performance should be limited to those beneficiaries whose clinical circumstances indicate there is reasonable likelihood that the complication could have been prevented (e.g., post-op wound infection). Failure to exclude beneficiaries with a complication over which a hospital has no influence or control (e.g., infection in an immunocompromised patient)
is not clinically credible, not actionable and undermines a hospital’s ability to achieve the real behavior changes needed to improve performance.

- **Comprehensive**: Successful quality improvement efforts require behavior changes that typically require changes in organizational culture. Such cultural changes cannot occur in limited areas within a hospital but need to be organization wide. This means that the full scope of inpatient complications, not just isolated examples, should be included in a redesigned HACRP.

- **Risk adjustment that provides a language of performance**: IPPS uses DRGs as the method of risk adjustment. The categorical structure of the DRGs allows performance benchmarks (the DRG price) to be set for each risk category (each DRG), thereby creating the language of performance expectations. It is essential to use real-world benchmarks for judging complication performance because even the best performing hospitals will have a residual rate of complications. Similarly, the risk adjustment for complications should be based on discrete clinically credible risk categories that allow hospital performance to be compared to national benchmarks in each risk category, thereby creating a clinically credible language of complication performance expectations.

- **Include both Penalties and Bonuses**: Under IPPS, hospitals can realize a profit or take a loss that is directly related to their relative performance. Penalty-only systems weaken the incentive for performance improvement. The magnitude of any penalties or bonuses should be proportional to the actual financial harm or benefit of a hospital’s complication performance and not based on arbitrary payment adjustments that can be disproportionate to the relative impact of the hospital’s complication performance.

These four requirements may seem obvious, but none of these requirements are met in the design of the current HACRP system.

Hospital Complication Avoidance Rate Evaluation (H-CARE)

An alternative to HACRP, referred to as the Hospital Complication Avoidance Rate Evaluation or H-CARE is proposed. To the extent possible, H-CARE is based on payment systems for complications that have been implemented and are actively being used today for hospital payment. Five state Medicaid programs have implemented payment incentive systems related to complication performance that are generally consistent with the IPPS payment design principles. These states use Potentially Preventable Complications (PPCs) for a comprehensive identification of complications and All Patient Refined DRGs (APR DRGs) for risk adjustment.

- **Potentially Preventable Complications**: PPCs are harmful events (accidental laceration during a procedure) or negative outcomes (hospital-acquired pneumonia) that may result from the process of care and treatment rather than from a natural progression of underlying disease. The PPCs are claims-based and are composed of 57 individual PPCs that encompass the full range of complications including the PSI 90 complications used in HACRP. For each PPC, the patients considered at risk for the PPC and the clinical circumstances under which the PPC can be considered potentially preventable are specified. Any patient who experiences one or more PPCs during their hospital stay is considered to have a PPC. The marginal cost of each PPC is known and can be used to determine the financial impact of PPC performance.
All Patient Refined Diagnosis Related Groups: APR DRGs are a categorical clinical model composed of base DRGs that are subdivided into four severity of illness levels based on the extent of physiologic decompensation or organ system loss of function. The underlying clinical principle of APR DRGs is that patients with high severity of illness are usually characterized by multiple serious illnesses. In the APR DRGs, the assessment of a patient’s severity of illness is specific to the base APR-DRG assigned to the patient (the reason for admission). In other words, the determination of the severity of illness is disease specific. In APR DRGs, high severity of illness is primarily determined by the interaction of multiple diseases. Patients with multiple comorbid conditions involving multiple organ systems represent difficult-to-treat patients who tend to have poor outcomes. The APR DRG is computed at the time of admission and at the time of discharge. The admission APR DRG is used for risk adjusting PPCs.

Because PPCs and APR DRGs have been used in government payment systems, they have undergone the intense scrutiny associated with any regulatory implementation. PPC and APR DRG-based payment system reforms have had a substantial impact on inpatient complication rates. For example, in the Maryland HMAC all-payer complication payment reform initiative, hospitals in Maryland were able to achieve a 56.6% reduction in inpatient complications over the first five years of the PPC payment reform. PPCs and APR DRGs have been widely evaluated and utilized in the health care literature. Appendix A contains a bibliography of articles and reports using the PPCs and APR DRGs.

Hospital Expected PPC Performance
The rate of occurrence of each type of complication (each PPC) will vary across each APR DRG. Each type of PPC differs in clinical significance and financial impact. For example, a complication of sepsis has a greater clinical and financial impact than a complication of a UTI. Poor PPC performance can be the result of an excess total number of PPCs or a more serious and costly mix of PPCs. Thus, both the frequency of occurrence across APR DRGs and the mix of PPCs must be accounted for in determining PPC performance. The marginal cost of each PPC is used as the basis for determining the PPC performance when there is a mix of PPCs.

In the Maryland Hospital Acquired Conditions (HMAC) all-payer complication payment reform initiative, hospitals in Maryland were able to achieve a 56.6% reduction in inpatient complications over the first five years of the PPC payment reform.

A national PPC norm for each APR DRG can be calculated by summing the actual PPC volume adjusted for the mix of PPCs across all Medicare admissions at-risk for the PPC being potentially preventable. The PPC expected value for any hospital is the number of at-risk beneficiaries in each APR DRG admitted to the hospital times the national PPC norm value for the APR DRG summed over all APR DRGs (indirect rate standardization). Because HACRP was intended to reduce Medicare payments to hospitals, a national best practice norm can also be computed using the subset of hospitals with the best PPC performance. Using a PPC best practice norm to compute PPC expected values ensures that penalty payments will exceed bonus payments. Comparison to a reference norm is critical because even the best performing delivery systems that provide optimal care will have an underlying rate of performance issues.
H-CARE Payment Model
Once the actual (A) and expected (E) PPC performance for a hospital has been determined, the product of the A minus E difference (A-E) times the APR DRG per case payment is a measure of the financial harm or benefit from the PPC performance of the hospital. Dividing the (A-E) financial PPC impact by total payments to the hospital provides a measure of the fraction of total payments to the hospital that are associated with PPC performance. A positive fraction indicates a higher-than-expected PPC financial impact, and a negative fraction indicates a lower-than-expected PPC financial impact. To determine a payment adjustment factor, the PPC financial impact fraction can be constrained to be within a predefined upper and lower bound such as -2% to +2%. Subtracting the PPC financial impact fraction from 1.0 gives a payment adjustment factor that can be applied to all IPPS payments to a hospital (e.g., a positive 2% PPC financial impact fraction results in a 98% payment adjustment factor being applied to all IPPS payments).

Comparison of HACRP and H-CARE
Table 1 contains a comparison of the key design components of HACRP and H-CARE. The essential lesson of IPPS is that improved performance requires real behavior change, so payment system incentives must be clinically credible and actionable. The design of H-CARE is consistent with this key lesson. IPPS is a straightforward and easily understood “product with a price” payment system that sets a target efficiency performance expectation based on the condition of a patient (DRG). Similarly, the H-CARE payment model sets a target performance expectation for each type of complication (PPC) based on the condition of a patient (APR DRG). Both IPPS and H-CARE create a clinically credible and understandable language of performance that facilitates real and sustainable behavior change.

Table 1: Essential design components of HACRP and H-CARE

<table>
<thead>
<tr>
<th>Design Component</th>
<th>HACRP</th>
<th>H-CARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive</td>
<td>Narrow group of infections and post-op complications</td>
<td>Complete scope of complications</td>
</tr>
<tr>
<td>Risk adjustment</td>
<td>No patient condition-based risk adjustment. Limited adjustment for practice patterns related to ICU and catheter use.</td>
<td>Full patient condition-based risk adjustment including patient severity of illness</td>
</tr>
<tr>
<td>Performance norms</td>
<td>No complication and patient condition specific performance targets</td>
<td>Complication and patient condition specific performance targets</td>
</tr>
<tr>
<td>Financial incentives</td>
<td>Avoid being in the bottom quartile of performance</td>
<td>Meet or exceed complication and patient condition specific performance targets</td>
</tr>
<tr>
<td>Clinically credible and actionable</td>
<td>All complications assumed to be preventable</td>
<td>Based on patient condition excludes complications not considered potentially preventable</td>
</tr>
<tr>
<td>Payment bonuses</td>
<td>Penalty only</td>
<td>Penalties and bonuses</td>
</tr>
<tr>
<td>Proportional financial impaction</td>
<td>Disproportionate 1% penalty on all Medicare payments</td>
<td>Penalty and bonus proportional to financial impact of complication performance</td>
</tr>
</tbody>
</table>
Socioeconomic Status

HACRP penalties disproportionately impact hospitals caring for socioeconomic disadvantaged patients. The socioeconomic status (SES) component of The Social Vulnerability Index (SVI) from the Centers for Disease Control and Prevention (CDC) ranks U.S. counties based on the SES of the population residing in the county. The average SES rank of the county of residence of admitted patients was computed for each hospital. Hospitals were then ranked based on the average SES rank of the counties where their patients resided. This hospital rank was used to evaluate the impact of SES on the distribution of penalties and bonuses under H-CARE.

Data

The PPC payment simulation used data in the Medicare Standard Analytic Files (Limited Data Set (LDS)) for calendar year 2018. The LDS files contain 100% of Medicare fee-for-service (FFS) claims data for hospital inpatients. The LDS Master Beneficiary Summary File (MBSF) contains enrollment data on all Medicare beneficiaries enrolled in or entitled to Medicare within a given calendar year. The 3,091 hospitals paid under IPPS were included in the simulation. The hospital data contains a present on admission (POA) indicator for each diagnosis. The POA indicator is used to identify complications that occur during the hospital stay. A series of edits were applied to the POA field to determine if a hospital was reporting reliable POA data. The POA edits excluded 206 hospitals from the simulation. For a small number of counties, no SVI SES rank was available. 42 hospitals were excluded from the simulation because they had a substantial number of patients residing in counties with no SVI SES rank. After exclusions, 2,843 hospitals with 8,638,028 admissions were included in the simulation.

Simulating an H-CARE Payment System

A best practice norm based on the 1,409 best PPC performing hospitals that comprise 40% of Medicare IPPS admissions was used in the payment simulation. Table 2 contains the PPC payment simulation results for different upper and lower bounds applied to the hospital payment adjustment factor. The %(A-E)/E is also contained in Table 1. If (A-E) is positive (A>E), the %(A-E)/E is the percent by which the actual PPC performance is higher than expected (i.e., the percent improvement necessary to achieve PPC best practice). If (A-E) is negative (A>E), the %(A-E)/E is the percent by which the actual PPC performance is lower than expected (i.e., the percent by which PPC performance is better than best practice).

Table 2: H-CARE payment simulation results for different upper and lower bounds applied to the hospital payment adjustment factor

<table>
<thead>
<tr>
<th></th>
<th>Hospitals</th>
<th>%(A-E)/E</th>
<th>$ No Cap (000,000)</th>
<th>$ 3% Cap (000,000)</th>
<th>$ 2% Cap (000,000)</th>
<th>$ 1% Cap (000,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Penalty</td>
<td>2,019</td>
<td>39.7</td>
<td>1,290.0</td>
<td>1,241.5</td>
<td>1,115.7</td>
<td>725.6</td>
</tr>
<tr>
<td>With Bonus</td>
<td>824</td>
<td>-17.8</td>
<td>101.8</td>
<td>100.7</td>
<td>98.0</td>
<td>81.5</td>
</tr>
<tr>
<td>All Hospitals Net</td>
<td>2,843</td>
<td>31.1</td>
<td>1,188.2</td>
<td>1,140.8</td>
<td>1,017.7</td>
<td>644.1</td>
</tr>
</tbody>
</table>
Using the best practice norm to determine hospital complication performance results in 2,019 hospitals (71%) with a penalty and 824 (29%) with a bonus. 1,260 of the hospitals with a penalty had the full 1% penalty imposed and 322 of the hospitals with a bonus received the full 1% bonus. Thus, H-CARE financial penalties and bonuses provides substantial incentives for complication performance improvement. On average, the hospitals with a penalty exceeded the best practice norm by 39.7% and the hospitals with a bonus were 17.8% below the best practice norm. Although the 39.7% improvement needed to achieve best practice performance requires significant behavior change and improved performance, Maryland hospitals were able to achieve a 56.6% reduction in inpatient complications over the first five years of the PPC payment reform. Furthermore, the level of improvements achieved by IPPS were far greater. For example, before the implementation of IPPS, there was a six-fold variation in the average amount Medicare paid to individual hospitals for the treatment of an acute myocardial infarction. IPPS essentially eliminated that six-fold level of variation.

Substantial and sustainable improvements in hospital inpatient complication performance can only be achieved through real behavior change. Because the H-CARE payment penalties and bonuses are comprehensive, clinically credible and actionable, they can provide an effective incentive for real behavior change.

With no cap on the payment adjustment factor, payment penalties were $1.29 billion and payment bonuses were $101.8 million for a net payment reduction of $1.19 billion. The addition of a 3% or 2% payment cap on the hospital payment adjustment factor reduced the net payment reduction only slightly. A 1% cap on the hospital payment adjustment factor did have a substantial impact, reducing the net payment reduction to $644.3 million. The 1% cap is consistent with the HACRP hospital penalty of 1%. The HACRP payment penalties in 2018 are estimated to be $294 million. With a 1% cap on the hospital payment adjustment factor, H-CARE has a net payment reduction of $644.3, which is roughly double the HACRP payment penalty. The net payment reduction can be reduced further by lowering the percent cap below 1%. For example, a payment cap of 0.5% of the total Medicare payments to a hospital would reduce the net payment reduction to $346.5 million. Because HACRP limits a hospital’s payment reduction to 1%, a 1% payment cap will be utilized in the H-CARE payment simulations discussed below.

H-CARE Payment Simulation by State

The H-CARE payment simulation with a 1% cap for the hospitals in each state is contained in Table 3. The overall %/(A-E)/E across states varies from a high of 79.8% above best practice performance for the District of Columbia to a low of 23.5 above best practice for Maryland. While 29% of hospitals have bonus payments overall, the percent of hospitals with a bonus ranged from zero to 66.7%. Vermont, Utah and Maryland had the highest percent of hospitals with a bonus at 66.7, 62.1 and 59.5%, respectively. However, Maryland is the only state in which bonus payments exceeded penalty payments to hospitals. This is not surprising since Maryland has implemented aggressive payment incentives to lower inpatient complications.
Table 3: H-CARE payment simulation with a one percent cap by state

<table>
<thead>
<tr>
<th>State</th>
<th>Hospitals</th>
<th>(%(A-E)/E)</th>
<th>With Penalty</th>
<th>$000</th>
<th>With Bonus</th>
<th>$000</th>
<th>% of Hospitals</th>
<th>Net $000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>61</td>
<td>39.7</td>
<td>41</td>
<td>146</td>
<td>20</td>
<td>-26.4</td>
<td>1051</td>
<td>32.8</td>
</tr>
<tr>
<td>Alaska</td>
<td>7</td>
<td>44.6</td>
<td>6</td>
<td>48.8</td>
<td>1</td>
<td>-6.6</td>
<td>32</td>
<td>14.3</td>
</tr>
<tr>
<td>Arizona</td>
<td>54</td>
<td>24.9</td>
<td>40</td>
<td>33.8</td>
<td>14</td>
<td>-12.0</td>
<td>1166</td>
<td>25.9</td>
</tr>
<tr>
<td>Arkansas</td>
<td>42</td>
<td>23.8</td>
<td>27</td>
<td>34.2</td>
<td>15</td>
<td>-20.0</td>
<td>1246</td>
<td>35.7</td>
</tr>
<tr>
<td>California</td>
<td>261</td>
<td>25.9</td>
<td>178</td>
<td>36.5</td>
<td>83</td>
<td>-19.7</td>
<td>8385</td>
<td>31.8</td>
</tr>
<tr>
<td>Colorado</td>
<td>44</td>
<td>23.4</td>
<td>28</td>
<td>35.0</td>
<td>16</td>
<td>-8.1</td>
<td>982</td>
<td>36.4</td>
</tr>
<tr>
<td>Connecticut</td>
<td>27</td>
<td>51.3</td>
<td>24</td>
<td>53.1</td>
<td>3</td>
<td>-40.2</td>
<td>198</td>
<td>11.1</td>
</tr>
<tr>
<td>Delaware</td>
<td>5</td>
<td>51.6</td>
<td>5</td>
<td>51.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>DC</td>
<td>7</td>
<td>79.8</td>
<td>6</td>
<td>8.3</td>
<td>1</td>
<td>-39.4</td>
<td>151</td>
<td>14.3</td>
</tr>
<tr>
<td>Florida</td>
<td>157</td>
<td>23.2</td>
<td>110</td>
<td>34.3</td>
<td>47</td>
<td>-17.6</td>
<td>9677</td>
<td>29.9</td>
</tr>
<tr>
<td>Georgia</td>
<td>86</td>
<td>35.0</td>
<td>66</td>
<td>42.2</td>
<td>20</td>
<td>-12.7</td>
<td>1530</td>
<td>23.3</td>
</tr>
<tr>
<td>Hawaii</td>
<td>12</td>
<td>27.4</td>
<td>8</td>
<td>39.5</td>
<td>4</td>
<td>-24.5</td>
<td>336</td>
<td>33.3</td>
</tr>
<tr>
<td>Idaho</td>
<td>14</td>
<td>12.4</td>
<td>9</td>
<td>22.2</td>
<td>5</td>
<td>-12.9</td>
<td>427</td>
<td>35.7</td>
</tr>
<tr>
<td>Illinois</td>
<td>120</td>
<td>38.8</td>
<td>91</td>
<td>47.9</td>
<td>29</td>
<td>-22.9</td>
<td>4033</td>
<td>24.2</td>
</tr>
<tr>
<td>Indiana</td>
<td>77</td>
<td>34.3</td>
<td>58</td>
<td>41.3</td>
<td>19</td>
<td>-17.2</td>
<td>1180</td>
<td>24.7</td>
</tr>
<tr>
<td>Iowa</td>
<td>32</td>
<td>36.4</td>
<td>24</td>
<td>45.1</td>
<td>8</td>
<td>-12.9</td>
<td>648</td>
<td>25.0</td>
</tr>
<tr>
<td>Kansas</td>
<td>39</td>
<td>15.8</td>
<td>20</td>
<td>31.7</td>
<td>19</td>
<td>-13.1</td>
<td>1285</td>
<td>48.7</td>
</tr>
<tr>
<td>Kentucky</td>
<td>57</td>
<td>29.8</td>
<td>39</td>
<td>44.4</td>
<td>18</td>
<td>-9.0</td>
<td>1496</td>
<td>31.6</td>
</tr>
<tr>
<td>Louisiana</td>
<td>68</td>
<td>26.2</td>
<td>48</td>
<td>34.2</td>
<td>20</td>
<td>-21.3</td>
<td>1450</td>
<td>29.4</td>
</tr>
<tr>
<td>Maine</td>
<td>17</td>
<td>43.7</td>
<td>14</td>
<td>47.7</td>
<td>3</td>
<td>-21.5</td>
<td>169</td>
<td>17.6</td>
</tr>
<tr>
<td>Maryland</td>
<td>42</td>
<td>1.2</td>
<td>17</td>
<td>23.5</td>
<td>25</td>
<td>-20.6</td>
<td>7195</td>
<td>59.5</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>52</td>
<td>48.1</td>
<td>45</td>
<td>52.7</td>
<td>7</td>
<td>-26.7</td>
<td>3873</td>
<td>13.5</td>
</tr>
<tr>
<td>Michigan</td>
<td>87</td>
<td>36.8</td>
<td>67</td>
<td>39.9</td>
<td>20</td>
<td>-22.5</td>
<td>1341</td>
<td>23.0</td>
</tr>
<tr>
<td>Minnesota</td>
<td>47</td>
<td>30.6</td>
<td>38</td>
<td>32.2</td>
<td>9</td>
<td>-24.1</td>
<td>373</td>
<td>19.1</td>
</tr>
<tr>
<td>Mississippi</td>
<td>41</td>
<td>33.6</td>
<td>27</td>
<td>44.4</td>
<td>14</td>
<td>-13.4</td>
<td>987</td>
<td>34.1</td>
</tr>
<tr>
<td>Missouri</td>
<td>65</td>
<td>27.1</td>
<td>41</td>
<td>37.4</td>
<td>24</td>
<td>-13.7</td>
<td>2407</td>
<td>36.9</td>
</tr>
<tr>
<td>Montana</td>
<td>13</td>
<td>16.2</td>
<td>10</td>
<td>24.8</td>
<td>3</td>
<td>-18.7</td>
<td>454</td>
<td>23.1</td>
</tr>
<tr>
<td>Nebraska</td>
<td>23</td>
<td>27.3</td>
<td>11</td>
<td>45.9</td>
<td>12</td>
<td>-19.7</td>
<td>1181</td>
<td>52.2</td>
</tr>
<tr>
<td>Nevada</td>
<td>18</td>
<td>29.7</td>
<td>12</td>
<td>36.7</td>
<td>6</td>
<td>-6.0</td>
<td>260</td>
<td>33.3</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>13</td>
<td>51.3</td>
<td>12</td>
<td>53.9</td>
<td>1</td>
<td>-10.0</td>
<td>84</td>
<td>7.7</td>
</tr>
<tr>
<td>New Jersey</td>
<td>63</td>
<td>32.5</td>
<td>57</td>
<td>36.7</td>
<td>6</td>
<td>-28.0</td>
<td>1285</td>
<td>9.5</td>
</tr>
<tr>
<td>New Mexico</td>
<td>26</td>
<td>33.4</td>
<td>20</td>
<td>41.9</td>
<td>6</td>
<td>-9.7</td>
<td>237</td>
<td>23.1</td>
</tr>
<tr>
<td>New York</td>
<td>134</td>
<td>44.3</td>
<td>114</td>
<td>47.7</td>
<td>20</td>
<td>-17.2</td>
<td>1672</td>
<td>14.9</td>
</tr>
<tr>
<td>North Carolina</td>
<td>80</td>
<td>31.1</td>
<td>64</td>
<td>34.6</td>
<td>16</td>
<td>-15.3</td>
<td>1294</td>
<td>20.0</td>
</tr>
<tr>
<td>North Dakota</td>
<td>6</td>
<td>38.8</td>
<td>6</td>
<td>38.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ohio</td>
<td>118</td>
<td>33.6</td>
<td>80</td>
<td>41.0</td>
<td>38</td>
<td>-17.5</td>
<td>2735</td>
<td>32.2</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>59</td>
<td>26.6</td>
<td>35</td>
<td>35.5</td>
<td>21</td>
<td>-17.2</td>
<td>1397</td>
<td>35.6</td>
</tr>
<tr>
<td>Oregon</td>
<td>34</td>
<td>21.3</td>
<td>24</td>
<td>25.7</td>
<td>10</td>
<td>-11.1</td>
<td>408</td>
<td>29.4</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>136</td>
<td>27.9</td>
<td>93</td>
<td>34.6</td>
<td>43</td>
<td>-19.5</td>
<td>2356</td>
<td>31.6</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>9</td>
<td>69.9</td>
<td>8</td>
<td>73.7</td>
<td>1</td>
<td>-13.5</td>
<td>58</td>
<td>11.1</td>
</tr>
<tr>
<td>South Carolina</td>
<td>50</td>
<td>29.8</td>
<td>32</td>
<td>41.2</td>
<td>18</td>
<td>-14.6</td>
<td>1708</td>
<td>36.0</td>
</tr>
<tr>
<td>South Dakota</td>
<td>14</td>
<td>24.3</td>
<td>9</td>
<td>32.8</td>
<td>5</td>
<td>-24.8</td>
<td>243</td>
<td>35.7</td>
</tr>
<tr>
<td>Tennessee</td>
<td>75</td>
<td>28.7</td>
<td>53</td>
<td>33.1</td>
<td>22</td>
<td>-27.6</td>
<td>1595</td>
<td>29.3</td>
</tr>
<tr>
<td>Texas</td>
<td>202</td>
<td>27.1</td>
<td>131</td>
<td>37.4</td>
<td>71</td>
<td>-17.6</td>
<td>6185</td>
<td>35.1</td>
</tr>
<tr>
<td>Utah</td>
<td>29</td>
<td>6.6</td>
<td>11</td>
<td>29.5</td>
<td>18</td>
<td>-22.3</td>
<td>1772</td>
<td>62.1</td>
</tr>
<tr>
<td>Vermont</td>
<td>6</td>
<td>16.6</td>
<td>2</td>
<td>38.5</td>
<td>4</td>
<td>-18.9</td>
<td>393</td>
<td>66.7</td>
</tr>
<tr>
<td>Virginia</td>
<td>68</td>
<td>27.7</td>
<td>44</td>
<td>39.0</td>
<td>24</td>
<td>-21.8</td>
<td>3565</td>
<td>35.3</td>
</tr>
<tr>
<td>Washington</td>
<td>48</td>
<td>38.0</td>
<td>42</td>
<td>40.6</td>
<td>6</td>
<td>-16.3</td>
<td>438</td>
<td>12.5</td>
</tr>
<tr>
<td>West Virginia</td>
<td>25</td>
<td>48.7</td>
<td>17</td>
<td>54.6</td>
<td>8</td>
<td>-13.8</td>
<td>375</td>
<td>32.0</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>64</td>
<td>29.3</td>
<td>46</td>
<td>39.5</td>
<td>18</td>
<td>-17.8</td>
<td>1636</td>
<td>28.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>9</td>
<td>19.3</td>
<td>6</td>
<td>33.6</td>
<td>3</td>
<td>-4.6</td>
<td>87</td>
<td>33.3</td>
</tr>
</tbody>
</table>
Restructuring the Incentives in the Medicare Hospital Acquired Condition Reduction Program to Achieve Better Patient Outcomes

Impact of Patient Socioeconomic Status
Hospitals were ranked based on the average SES rank of the counties where their patients resided from highest to lowest (the bottom 25th percentile contains the 25% of hospitals with the greatest population of patients from counties with low SES). Table 4 contains the results for hospitals in the top and bottom SES quartile for H-CARE with a 1% payment cap. There is little difference in %(A-E)/E for the hospitals in the top and bottom SES quartiles, indicating there is not a significant H-CARE payment bias for hospitals admitting patients from high and low SES areas. The percent of hospitals with a penalty and bonus is roughly the same for hospitals admitting patients from high and low SES areas.

Table 4: H-CARE payment simulation with a one percent cap for the hospitals in the top and bottom SES quartile based on the residence of patient population

<table>
<thead>
<tr>
<th>Hospitals With Penalty</th>
<th></th>
<th>Hospitals With Bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>%(%A-E)/E</td>
<td>$(000,000)</td>
</tr>
<tr>
<td>Bottom Quartile</td>
<td>485</td>
<td>41.7</td>
</tr>
<tr>
<td>Top Quartile</td>
<td>510</td>
<td>39.9</td>
</tr>
</tbody>
</table>

Impact of Hospital Type
Table 4 is based on the location (residence) of the patient. Table 5 is based on the location of the hospital expressed as large urban, other urban and rural. The difference in %(%A-E)/E across hospital locations is relatively small indicating there is not a significant H-CARE payment bias for hospitals in different locations. The percent of hospitals with a penalty and bonus is roughly the same across hospitals in different locations. Thus, H-CARE does not have payment bias based on the residence of a hospital’s patient population or the location of the hospital.

Table 5: H-CARE payment simulation with a one percent cap across different hospital locations

<table>
<thead>
<tr>
<th>Hospital Location</th>
<th>%(%A-E)/E with Penalty</th>
<th>Hospitals with Penalty</th>
<th>$ Penalty (000,000)</th>
<th>%(%A-E)/E with Bonus</th>
<th>Hospitals with Bonus</th>
<th>$ Bonus (000,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Urban</td>
<td>40.25</td>
<td>816</td>
<td>321.8</td>
<td>-17.61</td>
<td>291</td>
<td>33.4</td>
</tr>
<tr>
<td>Other Urban</td>
<td>37.38</td>
<td>550</td>
<td>210.1</td>
<td>-18.05</td>
<td>251</td>
<td>27.0</td>
</tr>
<tr>
<td>Rural</td>
<td>41.28</td>
<td>653</td>
<td>193.7</td>
<td>-17.77</td>
<td>282</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Hospitals can also be characterized by bed size, teaching status and caseload of disproportionate share patients. Although some studies have found that very large hospitals appear to experience a diseconomy of scale in terms of their production efficiency, it is not clear whether there is a diseconomy of scale for quality of care. One study did find that large hospitals performed poorer in terms of risk-adjusted readmissions for non-surgical patients. A high management complexity hospital can be defined as a hospital in the top 10% of bed size and either in the top 20% of caseload of Medicaid disproportionate share patients (IPPS DSH) or top 10% of teaching programs (IPPS IME). Of the 2,843 hospitals included in the simulation, there are 161 hospitals that meet this management complexity criteria. Table 6 contains the H-CARE simulation results for the high management complexity hospitals. 95.3% of high management complexity hospitals have an H-CARE penalty.
Table 6: H-CARE payment simulation with a one percent cap by hospital type

<table>
<thead>
<tr>
<th>Hospital</th>
<th>%(A-E)/E with Penalty</th>
<th>Hospitals with Penalty</th>
<th>$ Penalty (000,000)</th>
<th>% (A-E)/E with Bonus</th>
<th>Hospitals with Bonus</th>
<th>$ Bonus (000,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Management Complexity</td>
<td>51.51</td>
<td>161</td>
<td>176.9</td>
<td>-6.46</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>Other</td>
<td>36.45</td>
<td>1,858</td>
<td>548.7</td>
<td>-18.29</td>
<td>816</td>
<td>79.9</td>
</tr>
</tbody>
</table>

The relatively poor complication performance of high management complexity hospitals can be due to an inadequacy in the method of risk adjustment, or the inherent management complexity of these hospitals. Disproportionate share reflects the caseload of Medicaid patients in a hospital and is not necessarily indicative of the Medicare population in the hospital. The SES measure in Table 4 directly reflects the Medicare population of hospitals. Because complication performance for Medicare patients across SES populations is relatively consistent, it suggests that the excess complications observed for Medicare patients in large high-volume Medicaid hospitals is not a risk adjustment issue but more likely associated with the management complexity of these hospitals.

The dual mission of large teaching hospitals makes them inherently more complex to manage. Under H-CARE, the evaluation of complication performance is limited to those patients whose clinical circumstances make the complication potentially preventable. Arguably, teaching hospitals should be the best performing hospitals in avoiding such potentially preventable complications. The APR DRG risk adjustment used in H-CARE is very focused on identifying high severity patients with multi-organ system involvement. These are difficult to treat patients who may disproportionately be treated in teaching hospitals. While limitations in the risk adjustment cannot be completely ruled out, the inherent management complexity of large teaching hospitals is certainly a likely contributing factor to their complication performance. Medicare pays a higher per case payment rate to teaching hospitals. Those additional funds are intended to provide these hospitals with the resources needed to manage the additional complexity of their patient populations associated with their role as referral centers for specialized care such as major trauma care.

Discussion

The underlying assumption for the design of H-CARE is that substantial and sustainable improvements in hospital inpatient complication performance can only be achieved through real behavior change. Because the H-CARE payment penalties and bonuses are comprehensive, clinically credible, and actionable, they can provide an effective incentive for real behavior change. The design of H-CARE is consistent with the lessons learned from the implementation of IPPS and the implementation of the all-payer Maryland complication payment incentive system.

As the data in Table 3 demonstrates, the State of Maryland has been able to achieve real and sustainable improvements in complication performance. Thus, H-CARE is not a theoretical proposal, but an incentive-based payment system that has been proven to work in the real world. In contrast, HACRP has been largely unsuccessful in providing effective incentives for improving hospital complication performance.

The penalty and bonus amounts in the H-CARE simulation are estimates. Outlier payments and other payment adjustments for quality such as hospital value-based purchasing were not included in the payment simulation. Nevertheless, the simulation results do provide a fairly accurate estimate of the penalties and bonuses that would occur under H-CARE.
Summary and Conclusions

HACRP has proven to be an ineffective system for incentivizing improvements in inpatient complication performance. Modeled after the highly successful IPPS and Maryland complication payment incentive system, H-CARE provides comprehensive, clinically credible, and actionable incentives for improving hospital inpatient complication performance. H-CARE includes both payment penalties and bonuses to hospitals. Using a best practice norm to determine hospital complication performance and a 1% cap on hospital penalties and bonuses, H-CARE would result in Medicare payment reductions that are roughly twice the payment reductions resulting from HACRP. Under H-CARE, two-thirds of hospitals would have a payment penalty and one third of hospitals would have a payment bonus. There is not a payment bias toward hospitals treating a disproportionate volume of Medicare patients from geographic areas that have a lower socioeconomic status. However, large high management complexity hospitals do have higher than expected complication performance.
References

1 Centers for Medicare & Medicaid Services (CMS). (2021, December 1). Hospital-Acquired Condition Reduction Program. https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/HAC-Reduction-Program

Restructuring the Incentives in the Medicare Hospital Acquired Condition Reduction Program to Achieve Better Patient Outcomes

Appendix A: Bibliography of Publicly Available Articles and Reports

All articles and reports are publicly available and are listed in chronological order. The opinions and conclusions in these articles and reports are solely those of the authors.

Potentially Preventable Complications (PPCs)

Articles, Reports, and Book Chapters

Calikoglu S, Murray R, Feeney D. Hospital pay-for-performance programs in Maryland produced strong results, including reduced hospital-acquired conditions. Health Aff (Millwood). 2012;31(12):2649-2658

Websites

3M Health Information Systems: Overview of the 3M patient classification methodologies, with a link to a separate PPC sub-page. www.3m.com/his/methodologies

New York Department of Health: Consumer information website with charts and data sets showing PPC performance by hospital for multiple years. https://health.data.ny.gov/

Texas Department of State Health Services: Reports on statewide all-payer PPC incidence. https://www.dshs.texas.gov/thcic/hospitals/Potentially-Preventable-Complications-Reports/

Texas Health and Human Services Commission: Interactive webpage on PPC performance by hospital, by service delivery plan, and by managed care plan, with data for multiple years. www.thlcportal.com

All Patient Refined Diagnosis Related Groups (APR DRG)

Articles, Reports, and Book Chapters

Goldfield N, Averill R. On "Risk-adjusting acute myocardial infarction mortality: are APR DRGs the right tool?" Health Serv Res. 2000;34(7):1491-1495; discussion 1495-1498.

Romano PS, Chan BK. Risk-adjusting acute myocardial infarction mortality: are APR DRGs the right tool? Health Serv Res. 2000;34(7):1469-1489.

Restructuring the Incentives in the Medicare Hospital Acquired Condition Reduction Program to Achieve Better Patient Outcomes

Averill R, Fuller R. Low-cost outliers as alternatives to the two-midnight rule. Healthc Financ Manage. 2014(December)

Averill RF, Fuller RL. Implementing a site-neutral PPS. Healthc Financ Manag. 2016(April).

Fuller R, Hughes J. DNR orders known at the time of admission can improve hospital mortality ratings [abstract]. HSR. 2020;55(51):96

Websites

RI Medicaid APR-DRG Pricing Calculator. http://www.eohhs.ri.gov/ProvidersPartners/GeneralInformation/ProviderDirectories/Hospitals.aspx
Restructuring the Incentives in the Medicare Hospital Acquired Condition Reduction Program to Achieve Better Patient Outcomes

3M Health Information Systems. 3M Patient Classification Methodologies. Webpage: www.3m.com/his/methodologies

Indiana Department of Health. Hospital Discharge Data [webpage]. www.in.gov/isdh/20624.htm

Mississippi Division of Medicaid. Inpatient Hospital Payment Method for Mississippi Medicaid [webpage]. https://medicaid.ms.gov/providers/reimbursement/

Washington HealthCareCompare [webpage]. https://www.wahealthcarecompare.com/

Wisconsin Department of Health Services. ForwardHealth Rates and Weights [webpage]. https://www.forwardhealth.wi.gov/WIPortal/Tab/42/icscontent/Provider/Medicaid/hospital/dr g/drg.htm.spage#

California Department of Health Care Services. https://www.dhcs.ca.gov/provgovpart/Pages/DRG.aspx

Florida Agency for Health Care Administration--consumer information. www.floridahealthfinder.gov

Indiana Medicaid Diagnosis-Related Group Inpatient Reimbursement. https://www.in.gov/medicaid/providers/669.htm

Ohio Department of Medicaid Hospital Payment Policy. https://medicaid.ohio.gov/Provider/ProviderTypes/HospitalProviderInformation/HospitalPaymentPolicy
Restructuring the Incentives in the Medicare Hospital Acquired Condition Reduction Program to Achieve Better Patient Outcomes

