Socioeconomic Status and Health Care Delivery System Performance

3M Clinical and Economic Research

Richard F. Averill, MS
Ronald E. Mills, PhD

November 2021
Table of Contents

Executive Summary .. 2
Background ... 3
Objective ...4
Performance Measures ..4
Risk Adjustment and Expected Values .. 6
Data .. 7
Results .. 8
 Performance Measures by SES Percentiles .. 8
 Geographic Concentration of Low SES Counties ... 9
 Hospital Performance Across SES Populations .. 10
Discussion .. 12
Summary and Conclusions .. 13
References ... 14
Appendix A: State Medicaid Agencies and Major Commercial Payers Utilizing the
 Performance Measures and Risk Adjustment Methodologies for Payment or Reporting 16
Appendix B: Bibliography of Publicly Available Articles and Reports – PPAs, PPVs, PPCs,
 PPRs, PPREDs, CRGs, APR DRGs ... 17
Appendix C: Description of Performance Measures and Risk Adjustment Methods 37
Executive Summary

Extensive research has demonstrated that an individual’s socioeconomic status (SES) impacts the health care services they receive, health outcomes, patient satisfaction and physician perception of the care and treatment needed. This study evaluated the impact of SES on the performance of health care delivery systems using nine performance measures in four categories:

- **Population**: per capita admissions, per capita emergency department visits
- **Post-Acute Care**: readmissions, return emergency department visits
- **Quality**: inpatient complications, surgical mortality
- **Service Volume**: hospital admissions from the emergency department, admissions to a post-acute care facility, ambulatory visits

The SES component of the Social Vulnerability Index was used to measure SES in 3,140 counties in the United States. Counties were ranked by SES and then assigned to SES percentiles. 2018 Medicare fee-for-service claims data for beneficiaries located in each county was used to evaluate delivery system performance using the nine performance measures.

Delivery system performance in each SES percentile was evaluated by comparing actual delivery system performance for the beneficiaries living in the counties in each SES percentile to a risk-adjusted expected performance using the national average rate for each performance measure as a benchmark. Substantial differences in performance were observed for beneficiaries in the counties comprising the lowest SES quartile in comparison with the performance experienced by beneficiaries residing in counties in the highest SES quartile:

- Delivery system performance in low SES counties was higher than expected and in high SES counties was lower than expected for the population, post-acute care, and quality measures.
- For service volume measures, the converse was observed with delivery system performance in low SES counties being lower than expected and in high SES counties being higher than expected.

The population, post-acute care and quality measures are negative events that a well-functioning health care delivery system should seek to minimize. Beneficiaries in low SES counties have more per capita admissions and emergency department visits, more readmission and post-discharge returns to the emergency department, more inpatient complications, and higher surgical mortality than beneficiaries in high SES counties. These negative events indicate that the health care delivery system is not functioning as intended thereby creating health care equity concerns.

Performance on the service volume measures can result from under- or overuse of these service with multiple possible root causes including implicit bias, health insurance limitations, and maldistribution of health care services. Irrespective of the underlying root cause, beneficiaries in low SES counties are less like to be admitted from the emergency department for low-severity medical care, less likely to be admitted to a skilled nursing facility or to a rehabilitation facility following hospital discharge and have fewer physician or care management visits than beneficiaries in high SES counties.

When hospitals were ranked by the average SES percentile of the county of residence for patients admitted to the hospital and by the equity component of the Lown Institute Hospitals Index, the
pattern of performance differences across hospitals was relatively consistent with geographic SES results.

Based on substantial delivery system performance differences across SES populations, targeted payment policy reforms have the potential to create financial incentives for improving the functioning of the health care delivery system and improve health equity in low socioeconomic areas.

Beneficiaries in low SES counties have more per capita admissions and emergency department visits, more readmission and post-discharge returns to the emergency department, more inpatient complications, and higher surgical mortality than beneficiaries in high SES counties.

Background

The Biden administration has established health care equity as a major priority:

“The [CMS] Innovation Center will embed equity in every aspect of its [value based] models by seeking to include more providers serving low- and modest-income, racially diverse, and/or rural populations.”

There is extensive research that demonstrates that an individual’s socioeconomic status (SES) impacts health care services provided, health outcomes, patient satisfaction and physician perception. In addition, individuals with low SES often have less comprehensive health insurance coverage.

The Centers for Disease Control and Prevention (CDC) has developed the Social Vulnerability Index (SVI) at the state, county, and census tract level to help “public health officials and local planners better prepare communities to respond to emergency events such as severe weather, floods, disease outbreaks, or chemical exposure.” The SVI is composed of four subsections, which the CDC refers to as themes:

- Socioeconomic Status
- Household Composition & Disability
- Minority Status & Language
- Housing Type & Transportation

Each theme is composed of multiple factors. For example, four factors impact the socioeconomic status theme:

- below poverty
- unemployed
- income
- no high school diploma

For each factor within a theme, the CDC assigns a percentile rank to the census tracts, with a higher percentile ranking indicating greater vulnerability. These percentiles for individual factors are then
summed and the sums used to determine theme-specific percentile rankings at the state, county, and census tract level.

Objective

The objective of this study is to evaluate the impact of SES on the performance of health care delivery systems. Delivery system performance was evaluated using nine performance measures in four categories:

- **Population**: per capita admissions, per capita emergency department visits
- **Post-Acute Care**: readmissions, return emergency department visits
- **Quality**: inpatient complications, surgical mortality
- **Service Volume**: hospital admissions from the emergency department, admissions to a post-acute facility, per capita ambulatory visits

The SVI Socioeconomic Status theme (SVI SES) was used to measure SES in 3,140 U.S. counties. The SVI SES at the census tract level could not be used because the geographic location of Medicare beneficiaries reported on claims data could not be mapped to the census tract level. In the context of the CDC SVI SES theme, greater vulnerability and a lower socioeconomic status is indicated by a higher SVI SES percentile. This report reordered the SVI SES values to improve readability so that lower SVI SES values equate to a lower socioeconomic status and higher values indicate a higher socioeconomic status.

The SES component of the Social Vulnerability Index was used to measure SES in 3,140 counties in the United States. Counties were ranked by SES and then assigned to SES percentiles.

Performance Measures

To the extent possible, the study selected performance measures and risk adjustment methods that are actively being used for regulatory purposes such as health care payment. The methodologies collectively referred to as potentially preventable events (PPEs) were included as performance measures:

- Potentially Preventable Admissions (PPAs)10,11
- Potentially Preventable Emergency Department Visits (PPVs)10,12
- Potentially Preventable Readmissions (PPRs)13
- Potentially Preventable Return Emergency Department Visits (PPREDs)
- Potentially Preventable Complications (PPCs)14

The PPAs and PPVs were risk adjusted using Clinical Risk Groups (CRGs)15 and the PPRs, PPREDs and PPCs were risk adjusted using All Patient Refined Diagnosis Related Groups (APR DRGs).16 The APR DRGs, which include severity of illness and risk of mortality subclasses, are assigned at hospital admission and at discharge. The PPE measures, the CRGs and APR DRGs have substantial regulatory applications and have undergone the scrutiny associated with any regulatory implementation. Appendix A details the number of Medicaid and major commercial payers using...
the PPE measures, CRGs and APR DRGs. These methodologies have been widely utilized in health care and evaluated in the medical literature. Appendix B contains a bibliography of articles and reports about PPE, CRG and APR DRG applications.

An integral component of each PPE measure is the identification of those patients whose clinical circumstances are such that there is reasonable likelihood the PPE could have been avoided (referred to as “at-risk” patients). For example, a patient discharged for coronary bypass surgery is considered at risk for a potentially preventable readmission for a complication of the surgery, such as a surgical site infection, but is not considered at risk for a readmission for appendicitis because the appendicitis is not considered potentially preventable.

For each of the PPEs, there is an in-depth specification of the clinical circumstances under which the PPE would be considered potentially preventable. Identifying a PPE as potentially preventable does not mean that it is preventable for a specific patient. It means if there were a systematic pattern of higher-than-expected occurrence of the PPE, there would be concerns about quality of care or delivery system effectiveness. Essentially, the occurrence of a PPE is an end manifestation or outcome of an underlying quality or delivery system problem.

In addition, a measure of 30-day post-inpatient procedure mortality was utilized. Like the PPEs, the 30-day post inpatient procedure mortality only includes at-risk beneficiaries whose clinical circumstances make patient mortality an unexpected event so that a systematic pattern of higher-than-expected mortality would raise concerns regarding quality of care or delivery system effectiveness.

The PPEs and the 30-day post-inpatient procedure mortality measure are negative events which a well-functioning delivery system should seek to minimize. When rates of these measures are higher than expected, it indicates a delivery system that is not functioning as intended.

Three measures of service volume were also evaluated:

- non-surgical, low-severity admissions from the emergency department
- 4-day post-acute admission to a skilled nursing or rehabilitation facility
- per capita ambulatory physician and care management visits

Unlike the PPEs and the 30-day post-inpatient procedure mortality measure, service volume measures can have multiple interpretations. A lower-than-expected service volume rate could be caused by underutilization (a quality-of-care problem) and a higher-than-expected rate could be caused by overutilization (unnecessary expenditures). By simultaneously evaluating the PPEs, surgical mortality and the service volume measures, health care facilities can achieve more targeted insights into potential quality and delivery system problems. For example, a lower-than-expected rate of per capita ambulatory visits in the context of higher-than-expected rates of per capita hospital admissions and emergency department visits would raise questions concerning access to primary care.
Table 1 contains a summary overview of the PPEs, surgical mortality and the service volume measures. Appendix C contains a more detailed description of each of the PPEs, the 30-day post-inpatient procedure mortality measure and each of the service volume measures.

Table 1: Description of Performance Measures

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Methodology</th>
<th>At Risk</th>
<th>Risk Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital Admissions</td>
<td>Potentially Preventable Admissions (PPAs)</td>
<td>PPA potentially preventable logic</td>
<td>Clinical Risk Groups (CRGS)</td>
</tr>
<tr>
<td>ED Visits</td>
<td>Potentially Preventable Emergency Department Visits (PPVs)</td>
<td>PPV potentially preventable logic</td>
<td>Clinical Risk Groups (CRGS)</td>
</tr>
<tr>
<td>Post-acute Care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Readmissions (PPRs)</td>
<td>PPR within 30 days of hospital discharge</td>
<td>PPR potentially preventable logic</td>
<td>Discharge APR DRG with Severity of Illness Subclasses</td>
</tr>
<tr>
<td>Return ED Visits (PPRED)</td>
<td>PPRED within 30 days of hospital discharge</td>
<td>PPRED potentially preventable logic</td>
<td>Discharge APR DRG with Severity of Illness Subclasses</td>
</tr>
<tr>
<td>Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inpatient Complications (PPCs)</td>
<td>One or more PPCs during a hospital admission</td>
<td>PPC potentially preventable logic</td>
<td>Admission APR DRG with Severity of Illness Subclasses</td>
</tr>
<tr>
<td>Inpatient Surgical Mortality</td>
<td>Death within 30 days of an inpatient procedure</td>
<td>Excludes Admission APR DRG Risk of Mortality Level 4</td>
<td>Admission APR DRG with Risk of Mortality Subclasses</td>
</tr>
<tr>
<td>Service Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital Admission from the ED</td>
<td>Short Stay Non-Surgical Hospital Admissions from the Emergency Department</td>
<td>Excludes Admission APR DRG Severity of illness Level 3 and 4</td>
<td>Admission APR DRG with Severity of Illness Subclasses</td>
</tr>
<tr>
<td>Post Hospital Discharge Facility Admission</td>
<td>Admission to a skilled nursing or rehabilitation facility within four days of hospital discharge</td>
<td>Excludes Patients with discharge status inconsistent with PAC Admission</td>
<td>Discharge APR DRG with Severity of Illness Subclasses</td>
</tr>
<tr>
<td>Ambulatory Visits</td>
<td>Any ambulatory visit with an Evaluation and Management code</td>
<td>Excludes inpatients and emergency department visits</td>
<td>Clinical Risk Groups (CRGS)</td>
</tr>
</tbody>
</table>

Risk Adjustment and Expected Values

The nine performance measures were risk adjusted using APR DRGs or CRGs. Appendix C contains a more detailed description of the two methodologies. Both methods of risk adjustment are categorical clinical models. A categorical clinical model is composed of mutually exclusive and exhaustive clinically meaningful risk categories. Each beneficiary can be assigned to only a single risk category. A categorical clinical model allows the rate of occurrence of a performance measure in each risk category to be compared to the rate of occurrence of the performance measure in a reference population (norm) such as a national database.
A national norm for each performance measure was calculated by summing the actual value of each performance measure in each risk category across all Medicare beneficiaries at risk (referred to as the national norm value for the performance measure) and then computing the mean rate per at-risk beneficiary. For each performance measure, the expected value (E) for any subset of beneficiaries (e.g., beneficiaries in low SES counties) is the number of at-risk beneficiaries in each risk category times the national norm value for the risk category summed overall risk categories (indirect rate standardization.) The difference between the actual value (A) and the expected value (E) represents good performance if (A-E) is negative (A<E) and poor performance if (A-E) is positive (A>E). (%(A-E)/E is the percent by which the actual performance is lower than expected (%(A-E)/E is negative) or higher than expected (%(A-E)/E is positive). Comparison to a reference norm is critical because even the best performing delivery systems providing optimal care will have an underlying rate of performance issues.

Computing a risk-adjusted expected value in this way assures the comparison to actual performance is based on a performance level that is achievable and not based on an unattainable theoretical standard performance level. By limiting the determination of performance differences to beneficiaries at risk for a potentially preventable event, and by limiting the analysis to the difference between actual performance and expected performance based on a national risk-adjusted norm, the study identified differences in performance that should be amenable to change and are real opportunities for delivery system improvement.

Data

The study used data in the Medicare Standard Analytic Files (Limited Data Set (LDS)) for calendar years 2017 and 2018. The LDS files contain 100% of Medicare fee-for-service (FFS) claims data for inpatient, outpatient, skilled nursing facilities and home health agencies. The LDS carrier file contains Medicare FFS claims data for professional providers, including physicians, physician assistants, clinical social workers, and nurse practitioners for a random sample of five percent of Medicare beneficiaries. The LDS Master Beneficiary Summary File (MBSF) contains enrollment data on all Medicare beneficiaries enrolled in or entitled to Medicare within a given calendar year.

Claims data for 2018 was used for the hospital and emergency department measures and included only hospitals paid under the inpatient prospective payment system (IPPS). Beneficiaries were assigned to a county based on the residence of the beneficiary and not the location of the hospital where the beneficiary was treated.

For the population measures, it was necessary to build a complete longitudinal record of all FFS claims for each Medicare beneficiary. Because the LDS carrier file was limited to a five percent sample of Medicare beneficiaries, the data used for the population measures was limited to the beneficiaries in the LDS carrier file. The carrier file is a sample of all types of beneficiaries including beneficiaries in Medicare Advantage plans. To create a sample of just FFS beneficiaries, MBSF data was used to apply the following edits:

- Exclude beneficiaries who were not enrolled in both Medicare Part A and B for the full year (i.e., newly enrolled, disenrolled or reported died).
- Exclude beneficiaries who were enrolled in a managed care plan for one or more months.
- Exclude beneficiaries who were enrolled in hospice.

Calendar year 2017 was used to assign the CRG risk category to each beneficiary and calendar year 2018 was used to assign the population measures to each beneficiary. Depending on the hospital
Socioeconomic Status and Health Care Delivery System Performance

performance measure, the admission APR DRG or discharge APR DRG was used with either the severity of illness subclasses or risk of mortality subclasses (see Table 1 for details).

The 2018 SVI percentiles for each of 3,140 U.S. counties for the SES theme were used to define the socioeconomic status of the county in which each beneficiary resided. Beneficiaries for whom there was no match for the county reported in the MBSF and no match in the SVI county data were excluded from the analysis (3.5% of beneficiaries).

Results

The results are displayed by counties in the SES quartiles plus the lower and upper 10% SES decile. Table 2 contains summary statistics for each of the SES percentiles. In contrast to high SES counties, the low SES counties have fewer beneficiaries per county, fewer hospitals, more dual eligible enrollees and more minority beneficiaries. The percent of dual eligible in low SES counties is nearly triple the percent of dual eligible in high SES counties. The percent of minorities in low SES counties is more than triple the percent of minorities in high SES counties.

The income eligibility limit for Medicaid varies from state to state and can be expressed as a percent of the federal poverty level (FPL). Each beneficiary was assigned the Medicaid eligibility limit for a family of three based on criteria for full Medicaid eligibility in the state in which they reside and expressed as a percent of the FPL for 2018. In Table 2, the row labeled “Eligibility %FPL” contains the average Medicaid eligibility percent FLP for the beneficiaries in each SES percentile. Beneficiaries in counties with lower SES tend to live in states with a lower Medicaid eligibility income limit, making it more difficult to qualify for Medicaid from an income perspective.

Table 2: Summary statistics for counties by SES percentile

<table>
<thead>
<tr>
<th>Measure</th>
<th>Low SE Status</th>
<th>High SE Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counties</td>
<td>314-785</td>
<td>785-315</td>
</tr>
<tr>
<td>Beneficiaries</td>
<td>2,375,138</td>
<td>7,054,670</td>
</tr>
<tr>
<td>Benef/County</td>
<td>7,564-8,981</td>
<td>21,374-22,396</td>
</tr>
<tr>
<td>Hospitals</td>
<td>193-21,551</td>
<td>773-317</td>
</tr>
<tr>
<td>% Dual Eligible</td>
<td>33.0-16.9</td>
<td>773-317</td>
</tr>
<tr>
<td>% White</td>
<td>67.9-74.0</td>
<td>81.8-85.0</td>
</tr>
<tr>
<td>% Black</td>
<td>18.3-14.2</td>
<td>9.8-5.6</td>
</tr>
<tr>
<td>% Hispanic</td>
<td>8.0-4.5</td>
<td>2.3-1.2</td>
</tr>
<tr>
<td>Eligibility %FPL</td>
<td>88.2-102.1</td>
<td>108.9-113.2</td>
</tr>
</tbody>
</table>

Performance Measures by SES Percentiles

Table 3 contains the %/(A-E)/E for each performance measure for the counties in each of the SES percentiles. The bottom SES decile of 7.5 indicates that the number of potentially preventable hospital admissions is 7.5% higher than expected based on the risk-adjusted national rate. Conversely, the -4.5 in the top SES decile means that the number of potentially preventable hospital admissions is 4.5% lower than expected based on the risk-adjusted national rate. For ease of reading, performance above expected is shaded in red and below expected is shaded in green.
Table 3: %(A-E)/E for performance measures by SES percentile of counties

<table>
<thead>
<tr>
<th>Measure</th>
<th>Low SE Status</th>
<th>High SE Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SES 0-10%</td>
<td>SES 0-25%</td>
</tr>
<tr>
<td>Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital Admissions (PPAs)</td>
<td>7.5</td>
<td>7.2</td>
</tr>
<tr>
<td>ED Visits (PPVs)</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Post-acute Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Readmissions (PPR)</td>
<td>6.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Return to ED (PPRED)</td>
<td>5.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inpatient Complications (PPC)</td>
<td>1.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Surgical Mortality</td>
<td>6.3</td>
<td>8.1</td>
</tr>
<tr>
<td>Service Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED Admits</td>
<td>-10.5</td>
<td>-10.0</td>
</tr>
<tr>
<td>PAC Facility Admissions</td>
<td>-12.8</td>
<td>-9.3</td>
</tr>
<tr>
<td>Ambulatory Visits</td>
<td>-6.0</td>
<td>-6.5</td>
</tr>
</tbody>
</table>

Beneficiaries in counties with lower SES experience higher-than-expected rates of PPEs and surgical mortality while beneficiaries in counties with higher SES experience lower-than-expected rates for these measures. The PPEs and surgical mortality are negative events which a well-functioning delivery system should seek to minimize. Beneficiaries in low SES counties have more per capita admissions and emergency department visits, more readmission and post-discharge returns to the emergency department, more inpatient complications, and higher surgical mortality than beneficiaries in high SES counties—all indicating that a health care delivery system is not functioning as intended, thereby creating health care equity concerns.

For service volume measures, the converse is observed. Beneficiaries in counties with lower SES experience lower-than-expected rates of the service volume measures while beneficiaries in counties with higher SES experience higher-than-expected rates for these measures. Performance on service volume measures can reflect under- or overuse of these service with multiple possible root causes including implicit bias, health insurance limitations, and maldistribution of health care services. Irrespective of the underlying root cause, beneficiaries in low SES counties are less likely to be admitted from the emergency department for low severity medical care, less likely to be admitted to a skilled nursing facility or to a rehabilitation facility following hospital discharge and have fewer physician or care management visits than beneficiaries in high SES counties.

Geographic Concentration of Low SES Counties
Only 11.6% of all beneficiaries live in the 25% of counties that comprise the bottom SES quartile. The counties in the bottom SES quartile are highly concentrated in the three southern census regions (South Atlantic, East South Central and West South Central).* The southern region contains 80.5% of counties in the bottom SES quartile and 61.6% of all beneficiaries who live in counties in the bottom SES quartile.

Because the counties in the bottom SES quartile are so concentrated in the southern region, Table 4 compares measure performance in the bottom and top quartile for the southern region against

* FL, GA, SC, NC, VA, WV, DC, MD, DE, KY, TN, AL, MS, TX, OK, AR, LA
the rest of the nation. For the bottom SES quartile, the national and southern performance measure results are consistent, but with the PPE and surgical mortality measure performance slightly more above expected and service volume results slightly more below expected for the southern region. The most significant difference is in surgical mortality which is 14.1% above expected for the southern region. Since the %\((A-E)/E\) is based on a comparison to the nation’s average rates, the results for the northern and western census regions were generally closer to expected than the national results reported in Table 3. For the top SES quartile, the national and southern performance measure results are generally consistent.

Table 4: %\((A-E)/E\) for performance measures by SES percentile of counties for southern census regions versus the north and west census regions

<table>
<thead>
<tr>
<th>Measure</th>
<th>Low SES</th>
<th>High SES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US</td>
<td>South</td>
</tr>
<tr>
<td>Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital Admissions</td>
<td>7.2</td>
<td>8.0</td>
</tr>
<tr>
<td>ED Visits</td>
<td>3.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Post-acute Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Readmissions</td>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Return to ED</td>
<td>6.9</td>
<td>8.3</td>
</tr>
<tr>
<td>Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inpatient Complications</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Surgical Mortality</td>
<td>8.1</td>
<td>14.1</td>
</tr>
<tr>
<td>Service Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED Admits</td>
<td>-10.0</td>
<td>-13.2</td>
</tr>
<tr>
<td>PAC Facility Admissions</td>
<td>-9.3</td>
<td>-10.8</td>
</tr>
<tr>
<td>Ambulatory Visits</td>
<td>-6.5</td>
<td>-6.8</td>
</tr>
</tbody>
</table>

Hospital Performance Across SES Populations
The analysis focused on the impact of SES on delivery system performance across geographic areas. Six of the measures can be used to evaluate performance of individual hospitals: PPRs, PPCs, PPREDs, surgical mortality, PAC facility admissions and low severity admissions from the Emergency Department (ED). The study computed the average SES percentile of the county of residence for patients admitted to individual hospitals. Hospitals were then ranked based on the average SES percentile of their patients from highest to lowest. The bottom 25th percentile contains hospitals with the greatest percent of patients from counties with a low SES.

In addition to the SES ranking of hospitals, the equity component of the Lown Institute Hospitals Index was also assigned to each hospital. Developed by the Lown Institute, a nonpartisan research group, the Lown Institute Hospitals Index measures hospital social responsibility by examining and ranking performance across health outcomes, value and equity.

The equity component of the Lown Index is based on the following factors:

- **Inclusivity**: race, income, education
- **Pay Equity**: executive compensation versus worker compensation
- **Community Benefit**: charity care, community investment, Medicaid volume
Although the Lown Index includes some aspects of SES, it offers a broader characterization of the role a hospital plays in the community. The Lown Index assigns hospitals an A-D equity rating with A being the highest equity hospitals and D being the lowest equity hospitals. The performance measures are computed for hospitals in the 2018 data. The Lown Index for hospitals in 2020 was utilized. Due to hospital closures, openings, mergers, demergers and reclassifications, 11.6% of hospitals were not included in both the 2020 Lown index and the 2018 claims data and were excluded from the analysis.

Table 5 contains the %(A-E)/E for the six hospital performance measures for the 0-25 and 75-100 SES percentiles of hospitals and the Lown Index A and D rated hospitals. A Lown equity A rating would be expected to result in higher engagement with low SES populations.

Table 5: %(A-E)/E for performance measures by SES percentile of hospitals and by Lown Institute Index equity rating of hospitals

<table>
<thead>
<tr>
<th>Measure</th>
<th>Low SES (0-25%)</th>
<th>High Equity (A)</th>
<th>Low Equity (D)</th>
<th>High SES (75-100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-acute Care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Readmissions (PPR)</td>
<td>4.5</td>
<td>5.9</td>
<td>-2.5</td>
<td>-4.2</td>
</tr>
<tr>
<td>Return to ED (PPRED)</td>
<td>7.2</td>
<td>4.8</td>
<td>-9.5</td>
<td>-3.1</td>
</tr>
<tr>
<td>Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inpatient Complications (PPC)</td>
<td>-0.5</td>
<td>1.6</td>
<td>3.3</td>
<td>-0.1</td>
</tr>
<tr>
<td>Surgical Mortality</td>
<td>15.4</td>
<td>5.8</td>
<td>-13.6</td>
<td>-7.2</td>
</tr>
<tr>
<td>Service Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED Admits</td>
<td>-9.5</td>
<td>-6.6</td>
<td>18.0</td>
<td>4.1</td>
</tr>
<tr>
<td>PAC Facility Admissions</td>
<td>-4.6</td>
<td>0.0</td>
<td>-0.3</td>
<td>6.4</td>
</tr>
</tbody>
</table>

As shown in Table 5, the hospital SES percentile and Lown Index rating were consistent with each other and with the geographic SES results in Table 3 for PPRs, PPREDs, surgical mortality and low severity admissions from the ED. Hospitals with the greatest percent of patients from counties with low SES (the bottom 0-25th percentile) and hospitals with a Lown Index A rating (high equity) had higher-than-expected performance for PPRs, PPREDs and surgical mortality but lower-than-expected performance for low severity admissions from the ED. For example, surgical mortality was 15.4% higher than expected for hospitals with the greatest percent of patients from counties with low SES, and 5.8% higher than expected for hospitals with a Lown Index equity A rating. For PAC facility admissions, the hospital SES results were consistent with the geographic SES results but showed no performance difference with the Lown Index rating. Only one measure—PPCs—revealed some inconsistencies with the geographic SES results, but PPC performance differences were very small for the geographic SES results, hospital SES results and Lown Index rating. While SVI SES and the Lown Index are similar, they measure different aspects of a hospital’s performance. 40.7% of the Lown Index A-rated hospitals were in the bottom 0-25th percentile for SES and 54.3% of the Lown Index D-rated hospitals were in the top 75-100 percentile for SES. Overall, the pattern of performance is relatively consistent for the geographic SES results, hospital SES results and Lown Index rating. This consistent pattern of performance for low SES beneficiaries is an illustration of the health equity issues in the health care delivery system.
Discussion

The data in Table 3 demonstrates that health care delivery system performance is different for low SES and high SES geographic regions. The PPE and surgical mortality measures are limited to beneficiaries at risk for these potentially preventable events. Performance differences are also limited to the difference between actual performance and expected performance based on comparison to the national risk-adjusted rate. This two-tier filtering of beneficiaries for identifying performance differences is very different than comparing raw rates of measures like admissions and readmissions. As a result, performance differences identified in this study should be amenable to change and represent significant opportunities for delivery system improvement.

The performance issues identified for low SES geographic regions reflects health care delivery systems that are not functioning as intended, thus creating health care equity concerns. Solutions will inevitably require greater financial investment in low SES areas. There are two approaches to providing greater financial investment in these areas:

- Incorporate SES factors into the risk adjustment methodology thereby increasing the risk-adjusted payment levels for beneficiaries from low SES areas.
- Incorporate a SES geographic payment adjustment factor into the payment system.

The first option is a beneficiary-specific payment adjustment and the second is a payment adjustment based on geographic area. The intent of both approaches would be allocation of additional funds to providers to improve delivery system effectiveness (e.g., open more primary care clinics). There is no guarantee, however, that the additional funds would be used for such purposes.

If risk adjustment methodologies incorporated SES factors, performance problems associated with care provided to lower SES beneficiaries would essentially be hidden, making poor performance (e.g., higher readmission rates) appear acceptable for these beneficiaries. If hospitals are to achieve improved performance for lower SES beneficiaries, it is essential that areas of poor performance be highlighted and not hidden within the risk adjustment methodology.

The geographic area specific payment adjustment would be similar to the Disproportionate Share Hospital (DSH) payment adjustment in IPPS. Unlike the DSH payment adjustment, however, the additional SES funding should be contingent on performance improvement based on core performance measures such as those used in this report. Given the varying success of some value-based incentive programs,21 such an incentive-based approach would need to be carefully designed and incorporate the attributes of successful payment reform initiatives.22

The performance issues identified for low SES geographic regions reflects health care delivery systems that are not functioning as intended, thus creating health care equity concerns. Solutions will inevitably require greater financial investment in low SES areas.

Based on substantial delivery system performance differences across SES populations, targeted payment policy reforms have the potential to create financial incentives for improving health care delivery system performance and health equity in low socioeconomic areas.
SES was identified at the county level. Many counties are composed of fairly diverse SES populations. For example, the median family income in Fairfield County, Connecticut varies by a factor seven across the cities and towns in the county. Because the analysis was performed at the county level and not the census tract level, the results likely underestimate the magnitude of performance differences associated with SES.

Summary and Conclusions

Prior research has established that an individual’s socioeconomic status impacts the amount, type and quality of health care services they receive. The socioeconomic status component of the CDC Social Vulnerability Index was used to rank 3,140 counties across the U.S. Using nine measures of performance, health care delivery system effectiveness was evaluated for low socioeconomic status and high socioeconomic status geographic regions. The study found that low SES counties were disproportionately located in the three southern census regions. For negative events such as an avoidable hospital admission or surgical mortality, beneficiaries experience higher-than-expected rates if they reside in counties with lower SES. For service volume measures such as ambulatory physician and care management visits, beneficiaries in counties with lower SES experience lower-than-expected rates. When hospitals were ranked by the average SES percentile of the county of residence for patients admitted to the hospital and by the equity component of the Lown Institute Hospitals Index, the pattern of performance difference was relatively consistent with the geographic SES results. The performance issues identified for low SES geographic regions indicates that the health care delivery system is not functioning as intended in low SES counties thereby creating health care equity concerns. Targeted payment policy reforms have the potential to provide financial incentives to improve the functioning of the health care delivery system in low socioeconomic areas.
References

https://multimedia.3m.com/mws/media/2044668O/geographic-variation-emergency-department-visits.pdf.

19 Kaiser Family Foundation *Medicaid Income Eligibility Limits for Parents, 2002-2021.* https://www.kff.org/medicaid/state-indicator/medicaid-income-eligibility-limits-for-parents/?currentTimeframe=0&selectedDistributions=january-2018&selectedRows=%7B%22states%22%3A%7B%22%22all%22%3A%7B%22%2
Appendix A: State Medicaid Agencies and Major Commercial Payers Utilizing the Performance Measures and Risk Adjustment Methodologies for Payment or Reporting

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Payment</th>
<th>Reporting</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentially Preventable Admissions (PPAs)</td>
<td>10</td>
<td>3</td>
<td>Per Capita Admissions in a Population</td>
</tr>
<tr>
<td>Potentially Preventable Emergency Department Visits (PPVs)</td>
<td>9</td>
<td>4</td>
<td>Per Capita Emergency Department Visits in a population</td>
</tr>
<tr>
<td>Potentially Preventable Readmissions (PPRs)</td>
<td>12</td>
<td>11</td>
<td>Identification of Readmissions following Hospital Discharge</td>
</tr>
<tr>
<td>Potentially Preventable Return Emergency Department Visits (PPREDs)</td>
<td>0</td>
<td>1</td>
<td>Identification of ED Visits following Hospital Discharge</td>
</tr>
<tr>
<td>Potentially Preventable Complications (PPCs)</td>
<td>5</td>
<td>4</td>
<td>Identification of Complications for inpatients</td>
</tr>
<tr>
<td>Risk Adjustment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Patient Refined DRGs (APR DRGs)</td>
<td>40</td>
<td>4</td>
<td>Inpatient Risk Adjustment</td>
</tr>
<tr>
<td>Clinical Risk Groups (CRGs)</td>
<td>10</td>
<td>6</td>
<td>Population Risk Adjustment</td>
</tr>
</tbody>
</table>
Appendix B: Bibliography of Publicly Available Articles and Reports – PPAs, PPVs, PPCs, PPRs, PPREDs, CRGs, APR DRGs

All articles and reports are publicly available and are listed in chronological order. The opinions and conclusions in these articles and reports are solely those of the authors.

Potentially Preventable Admissions (PPAs)

Articles, Reports, and Book Chapters

Websites

3M Health Information Systems. 3M Patient Classification Methodologies. Webpage: www.3m.com/his/methodologies.

Superior Health Plan. www.superiorhealthplan.com/providers/resources/provider-programs/3m-his.html.

Potentially Preventable Emergency Department Visits (PPVs)

Articles, Reports, and Book Chapters

Websites

3M Health Information Systems. 3M Patient Classification Methodologies. Webpage: www.3m.com/his/methodologies.

Superior Health Plan. www.superiorhealthplan.com/providers/resources/provider-programs/3m-his.html.

Potentially Preventable Complications (PPCs)

Articles, Reports, and Book Chapters

Calikoglu S, Murray R, Feeney D. Hospital pay-for-performance programs in Maryland produced strong results, including reduced hospital-acquired conditions. Health Aff (Millwood). 2012;31(12):2649-2658

Websites

3M Health Information Systems: Overview of the 3M patient classification methodologies, with a link to a separate PPC sub-page. www.3m.com/his/methodologies

New York Department of Health: Consumer information website with charts and data sets showing PPC performance by hospital for multiple years. https://health.data.ny.gov/

Texas Department of State Health Services: Reports on statewide all-payer PPC incidence. https://www.dhs.texas.gov/thcic/hospitals/Potentially-Preventable-Complications-Reports/.

Texas Health and Human Services Commission: Interactive webpage on PPC performance by hospital, by service delivery plan, and by managed care plan, with data for multiple years. www.thlcportal.com

Potentially Preventable Readmissions (PPRs)

Articles, Reports, and Book Chapters

Goldfield N. Strategies to decrease the rate of preventable readmission to hospital. CMAJ. 2010;182(6):538-539.

Goldfield N. How important is it to identify avoidable hospital readmissions with certainty? CMAJ. 2011;183(7):e368-369.

Mississippi Division of Medicaid. DOM to phase in quality incentive payment program (QIPP) for hospitals. MS Medicaid Provider Bulletin. 2019;25(3):pp. 1-2

Websites

3M Health Information Systems. 3M Patient Classification Methodologies. Webpage: www.3m.com/his/methodologies

Florida Agency for Health Care Administration--consumer information. www.floridahealthfinder.gov

Ohio Department of Medicaid Modernize Hospital Payments. https://medicaid.ohio.gov/RESOURCES/Reports-and-Research/-Modernize-Hospital-Payments
Texas Department of State Health Services--readmissions. www.dshs.texas.gov/thcic/hospitals/Potentially-Preventable-Readmission-Reports/

Texas Health and Human Services Commission. www.thlcportal.com

Superior Health Plan. 3M Health Information. Available at https://www.superiorhealthplan.com/content/dam/centene/Superior/Provider/PDFs/SHP_20195046-3M-HIS-Resource-Guide-P-508-03202019.pdf

Potentially Preventable Return Visits to the Emergency Department (PPREDs)

Articles, Reports, and Book Chapters

Websites

3M Health Information Systems: 3M Patient Classification Methodologies. Webpage: www.3m.com/his/methodologies

Clinical Risk Groups (CRGs)

Articles, Reports, and Book Chapters

All Patient Refined Diagnosis Related Groups (APR DRG)

Articles, Reports, and Book Chapters

Goldfield N, Averill R. On “Risk-adjusting acute myocardial infarction mortality: are APR DRGs the right tool?” Health Serv Res. 2000;34(7):1491-1495; discussion 1495-1498.
Romano PS, Chan BK. Risk-adjusting acute myocardial infarction mortality: are APR DRGs the right tool? Health Serv Res. 2000;34(7):1469-1489

Shen Y. Applying the 3M All Patient Refined Diagnosis Related Groups Grouper to measure inpatient severity in the VA. Med Care. 2003;41(6 Suppl):II103-10

Averill R, Fuller R. Low-cost outliers as alternatives to the two-midnight rule. Healthc Financ Manage. 2014(December)

Averill RF, Fuller RL. Implementing a site-neutral PPS. Healthc Financ Manag. 2016(April).

Fuller R, Hughes J. DNR orders known at the time of admission can improve hospital mortality ratings [abstract]. HSR. 2020;55(51):96

Websites

RI Medicaid APR-DRG Pricing Calculator. http://www.eohhs.ri.gov/ProvidersPartners/GeneralInformation/ProviderDirectories/Hospitals.asp

3M Health Information Systems. 3M Patient Classification Methodologies. Webpage: www.3m.com/his/methodologies

Indiana Department of Health. Hospital Discharge Data [webpage]. www.in.gov/isdh/20624.htm

Mississippi Division of Medicaid. Inpatient Hospital Payment Method for Mississippi Medicaid [webpage]. https://medicaid.ms.gov/providers/reimbursement/

Washington HealthcareCompare [webpage]. https://www.wahealthcarecompare.com/

Wisconsin Department of Health Services. ForwardHealth Rates and Weights [webpage]. https://www.forwardhealth.wi.gov/WIPortal/Tab/42/icscontent/Provider/Medicaid/hospital/drg/drg.htm.spage#

California Department of Health Care Services. https://www.dhcs.ca.gov/provgovpart/Pages/DRG.aspx

Florida Agency for Health Care Administration--consumer information. www.floridahealthfinder.gov

Indiana Medicaid Diagnosis-Related Group Inpatient Reimbursement. https://www.in.gov/medicaid/providers/669.htm

Ohio Department of Medicaid Hospital Payment Policy. https://medicaid.ohio.gov/Provider/ProviderTypes/HospitalProviderInformation/HospitalPaymentPolicy

Socioeconomic Status and Health Care Delivery System Performance 35

3M Health Information Systems. 3M Patient Classification Methodologies. Webpage: www.3m.com/his/methodologies.

Appendix C: Description of Performance Measures and Risk Adjustment Methods

Performance Measures

Potentially Preventable Admissions
Potentially Preventable Admissions (PPAs) are hospital admissions that can often be avoided. There are six broad categories of PPAs:

- Admissions for chronic disease management that could potentially have been managed in the outpatient setting (e.g., asthma)
- Admissions for acute diseases that could potentially have been managed in the outpatient setting (e.g., viral pneumonia)
- Admissions for a procedure that can be done in an outpatient setting (e.g., cardiac catheterization for non-acute disease such as atherosclerosis)
- Admissions for a procedure for which there is a less invasive alternative procedure (e.g., percutaneous coronary angioplasty with a stent instead of coronary bypass surgery)
- Admissions for a procedure that research has shown to be prone to overuse (e.g., spinal procedures for back pain)
- Admissions that could potentially have been avoided for residents of a residential care facility such as a skilled nursing facility (e.g., trauma due a fall)

The most prevalent PPAs are for medical management of chronic and acute diseases. These hospital admissions may result from hospital or ambulatory care inefficiency, lack of adequate access to outpatient care, or inadequate coordination of ambulatory care services. In many cases PPAs are for flare-ups of chronic conditions (e.g., heart failure) for which adequate monitoring and follow-up, such as proper medication management, could have avoided the need for hospitalization.

Potential preventability is assessed relative to the care given in the immediate period preceding a hospital admission (months). Conditions that require an extended period of coordinated and integrated care are not considered potentially preventable. For example, an admission for renal failure is not considered a PPA because it is not preventable unless appropriate care has been given for several years before the admission making it is difficult to judge potential preventability based solely on the care given in the immediate period preceding the admission. Preventability is also assessed based on the relative acuteness of the reason for the admission. For example, an admission for a cardiac catheterization is considered potentially preventable for patients with a diagnosis of coronary atherosclerosis, but not preventable for patients with an acute myocardial infarction or unstable angina. Medicare beneficiaries living in residential care facilities such as a SNF or nursing home generally are expected to be receiving a higher level of coordinated care than beneficiaries living at home. Many conditions such as fever, urinary tract infections, metabolic disturbances and pneumonia can often be managed in a residential care facility, thereby avoiding the need for hospitalization. Other conditions such as diseases of the skin and injuries due to falls should be more readily avoided in a residential care facility setting. In determining whether an admission is potentially preventable, PPAs apply a broader list of conditions that are considered potentially preventable when a beneficiary is living in a residential care facility. For more detail, download the 3M Clinical and Economic Research report, Geographic variation in hospital admission rates in the Medicare population. https://multimedia.3m.com/mws/media/2044671O/geographic-variation-hospital-admission-rates.pdf
Potentially Preventable Emergency Department Visits

Potentially Preventable ED Visits (PPVs) are ED visits that can often be avoided. There are five broad categories of PPVs:

- ED visits for chronic disease management that could potentially have been managed in the outpatient setting (e.g., asthma)
- ED visits for minor acute conditions that could potentially have been managed in the outpatient setting (e.g., constipation)
- ED visits for signs and symptoms that do not require urgent care (e.g., lumbago)
- ED visits for minor trauma (contusions)
- ED visits that could potentially have been avoided for residents of a residential care facility such as a skilled nursing facility (e.g., trauma due to a fall)

The most prevalent PPVs will be for minor trauma and pain. These hospital emergency department visits may result from lack of access to adequate primary care or inadequate coordination of ambulatory care services. PPVs also include chronic conditions (e.g., hypertension) for which adequate monitoring and follow-up, such as proper medication management, could have avoided the need for an ED visit. A comprehensive evaluation of potentially preventable ED visits can provide a more complete assessment of the continuity of care and of the functioning of the health care delivery. For more detail, download the 3M Clinical and Economic Research report, *Geographic variation in hospital emergency department visits in the Medicare population*.

https://multimedia.3m.com/mws/media/2044668O/geographic-variation-emergency-department-visits.pdf

Potentially Preventable Complications

Potentially Preventable Complications (PPCs) are harmful events (accidental laceration during a procedure) or negative outcomes (hospital acquired pneumonia) that may result from the process of care and treatment rather than from a natural progression of underlying disease. There are 57 PPCs that encompass the full range of complications. For each PPC, the patients considered at risk for the PPC and the clinical circumstances under which the PPC could be considered potentially preventable are specified. Any patient who had one or more PPCs during their hospital stay is considered to have a PPC. For more detail, visit:

https://apps.3mhis.com/docs/Groupers/PPCs/methodology_overview/grp381_ppc_meth_overview.pdf

Potentially Preventable Readmissions

Potentially Preventable Readmissions (PPRs) are return hospitalizations within 30 days following a prior hospitalization. PPRs may result from deficiencies in the process of care (readmission for a surgical wound infection) or inadequate post-discharge follow-up (prescription not filled) rather than unrelated events that occur post discharge (broken leg due to trauma). Readmissions may result from actions taken or omitted during the initial hospital stay, such as incomplete treatment or poor care of the underlying problem, or from poor coordination of services at the time of discharge and afterwards, such as incomplete discharge planning or inadequate access to care. The admissions considered at risk for a PPR and the clinical circumstances under which a subsequent readmission is considered potentially preventable are specified in the PPR logic. A PPR is assigned to any admission that was followed by one or more potentially preventable readmissions during the
30 days following a hospital discharge. For more detail, visit:
https://multimedia.3m.com/mws/media/1684594O/3m-potentially-preventablereadmissions-methodology-overview.pdf

Potentially Preventable Return Emergency Room Visits Following Hospital Discharge

Potentially preventable return emergency room visits following hospital discharge (PPREDs) are return ED visits within 30 days following a prior hospitalization. PPREDs are identified using a modification of the PPR methodology to determine discharges at risk and potentially preventable ED visits. Similar to PPRs, PPREDs may result from deficiencies in the process of care (ER visit for a post-op infection) or inadequate post discharge follow-up (no primary care follow-up) rather than unrelated events that occur post discharge (trauma). Return ED visits may result from actions taken or omitted during the initial hospital stay, such as incomplete treatment or poor care of the underlying problem, or from poor coordination of services at the time of discharge and afterwards, such as incomplete discharge planning, or inadequate access to care. A PPRED is assigned to any patient who had at least one PPREDs during the 30 days following a hospital discharge. For more detail, download the 3M Clinical and Economic Research Report, *Geographic variation in hospital quality performance in Medicare.*

https://multimedia.3m.com/mws/media/1776317O/3m-his-medicare-regional-variation-case-study.pdf

Post-acute Care Facility Admission

The post-acute care (PAC) facility admission identifies patients who were admitted to a skilled nursing facility or rehabilitation facility within 4 days following a hospital discharge. Hospital discharges considered at risk are restricted to discharges for which home care may be a viable alternative to care provided in an institution. Patients for whom the hospital’s intended PAC plan of care is inconsistent with a PAC facility admission (e.g., a patient with a discharge status of discharge to hospice) or a patient who has an unanticipated event during the PAC four-day window (e.g., a patient with a discharge status of home but who was admitted to hospice on the second day before being admitted to a PAC facility on the fourth day following hospital discharge) were excluded from the PAC facility admission measure. By eliminating such ambiguous situations, the patients included in the PAC facility admission measure represent patients whose anticipated post-hospital discharge plan of care is consistent with a PAC facility admission. Download the report *Geographic variation in post-acute care facility admissions* at:

Hospital Admissions from the Emergency Department

The Emergency Department (ED) Admit measure identifies hospital admissions that are a low-severity medical admission from the ED. Patients who died, who were admitted for surgical procedures, who were admitted for conditions that are inherently high risk (e.g., AMI), who were at high severity (admission APR DRG severity of illness 3 or 4), who were covered by medical necessity considerations (e.g. behavioral health) and who had a length of stay of more than three days are excluded from the ED Admit measure. The ED visits that were not excluded are the at-risk population for the ED Admit measure and represent low severity medical admissions (chest pain, upper respiratory infections, etc.) for which outpatient care may be a viable option. For the at-risk ED visits, the ED Admit rate is the sum of ED visits that were admitted divided by the sum of ED visits that were admitted plus the ED visits that were not admitted.

Surgical Mortality

The surgical mortality measure is based on a 30-day post-procedure time period that includes in hospital and community deaths. Patients for whom a hospital was not considered reasonably responsible for the patient outcome, such as patients who left against medical advice, were transferred in, were in critical condition at the time of admission (APR DRG admission risk of...
mortality level 4), were admitted for conditions that inherently have a high risk of mortality (extensive third-degree burns) or had a clinically unrelated readmission (a PPR) during the 30-day post-procedure period were excluded. However, hospitals were considered responsible for mortality during any clinically related readmissions (non PPRs) in the 30-day post-procedure period. Surgical patients who were not excluded are the at-risk-population for the 30-day post procedure measure. Download the 3M Clinical and Economic Research report *Surgical mortality as a measure of hospital quality* at: https://multimedia.3m.com/mws/media/2044672O/surgical-mortality-hospital-quality.pdf

Ambulatory Visits
The ambulatory visit measure is the per capita number of physician or care management encounters. The encounters are identified by the reporting of an Evaluation and Management (E&M) code on a professional service fee-for-service claim for services deliver in specific sites of service. Encounters that have a site of service of a residential facility or that do not include care management services were excluded including hospital inpatient, emergency department, ambulatory surgery center, skilled nursing facility, inpatient rehabilitation facility, ambulance, immunization center and laboratory. Encounters that have a site of service of physician office, hospital outpatient clinic, home, assisted living, nursing home and other clinics and outpatient facilities were included.

Risk Adjustment Methods

All Patient Refined DRGs
All Patient Refined Diagnosis Related Groups (APR DRGs) are a categorical clinical model that is composed of base DRGs that are subdivided into four severity of illness level based on the extent of physiologic decompensation or organ system loss of function and four risk of mortality subclasses. The underlying clinical principles of APR DRGs are that the severity of illness and risk of mortality are highly dependent on the patient’s underlying clinical problems, and that patients with high severity of illness and risk of mortality are usually characterized by multiple serious illnesses. In the APR DRGs, the assessment of the severity of illness and risk of mortality of a patient is specific to the base APR-DRG to which a patient is assigned. In other words, the determination of the severity of illness and risk of mortality is disease specific. In APR DRGs, high severity of illness and risk of mortality are primarily determined by the interaction of multiple diseases. Patients with multiple comorbid conditions involving multiple organ systems represent difficult-to-treat patients who tend to have poor outcomes. The APR DRG is computed at the time of admission and at the time of discharge. For more detail, visit:
https://apps.3mhis.com/docs/Groupers/All_Patient_Refined_DRG/Methodology_overview_GRP041/grp041_aprdrg_meth_overview.pdf

Clinical Risk Groups
The Clinical Risk Groups (CRGs) are a categorical clinical model that assigns each individual in a population to a single mutually exclusive risk group that relates the clinical and demographic characteristics of an individual to their outcomes and healthcare resource use. CRGs describe the health status and burden of chronic illness of individuals and are subdivided into up to six severity of illness levels. Each CRG and severity subgroup is used to describe the health status of groups of individuals with a similar burden of chronic illness. Individuals with severe chronic disease in multiple organ systems are the patients who are most difficult to treat, experience poorer outcomes, and consume a disproportionate share of health care resources.

The CRGs (Version 2.1) are composed of 332 base CRGs that describe the beneficiary’s most significant chronic conditions and explicit severity levels that distinguish differences in disease burden due to severity of illness resulting in 1,414 individual CRGs. The individual CRGs are aggregated into nine health statuses ranging from catastrophic to healthy:
Status 1 – Healthy
Status 2 – History of Acute Disease e.g., Chest Pain
Status 3 – Single Minor Chronic Disease e.g., Migraine
Status 4 – Minor Chronic Disease in Multiple Organ Systems e.g., Migraine and BPH
Status 5 – Single Dominant or Moderate Chronic Disease e.g., CHF
Status 6 - Dominant or Moderate Chronic Disease in Multiple Organ Systems, e.g., CHF, COPD
Status 7 - Dominant Chronic Disease in Three or More Organ Systems, e.g., CHF, COPD, DM
Status 8 - Malignancy, Under Active Treatment, e.g., Lung Cancer
Status 9 - Catastrophic Conditions, e.g., Major Organ Transplant

Based on the severity levels of the chronic conditions that comprise each status, beneficiaries in
the nine statuses are assigned a severity level between one and six resulting in 53 aggregated
CRG risk categories. The CRGs are a transparent system with a definition manual available for
inspection. For an overview of the methodology, visit:
https://apps.3mhis.com/docs/Groupers/Clinical_Risk_Grouping_CRG/methodology_overview/g
rp401_crg_v2.2_meth_overview.pdf