

Comparing Advanced Materials Properties for High Frequency Telecommunications Hardware Applications

Presented by 3M Product Developer, Steve Amos

© 3M 2021. All Rights Reserved.

Agenda

- Introduction to 3M Company & Advanced Material Division
- Material Challenges for 5G and Millimeter Wave Signal Transmission
- 3M Material Solutions and Applications

3M[™] Glass Bubbles

3M™ Nextel™ Ceramic Fibers

- Summary
- Questions during or after the presentation can be asked at <u>3M.com/5G AST</u>

Who we are – 3M Consists of Four Business Groups

Working together to leverage the breadth of solutions & support

Safety & Industrial

Transportation & Electronics

- Display materials
- Automotive and aerospace
- Electronics materials
- Commercial solutions
- Advanced materials
- Transportation safety

Health Care

Consumer

At 3M we can help solve your design challenges by leveraging the <u>breadth</u> of 3M Technology

Ad Adhesives	Em Electronic Materials										Display Components	Hd Healthcare Data Management
Bi Biomaterials	Fi lms	Nw Nonwovens							Modeling & Simulation	Acoustic Management	Energy Components	Light Management
Ce Ceramics	Fluoro- materials	Pm Performance Materials	Am Additive Manufacturing	Precision Coating & Web Processing	Radiation Processing	Analytical Science	Process Design & Control	Cv Computer Vision	Ro Advanced Robotics	Biodetection & Microbial Management	Eg Engineered Graphics	Mechanical Fasteners
Co Advanced Composites	Mm Metamaterials	Porous Materials & Membranes	Mo Molding	Pd Particle & Dispersion Processing	Surface Modification	Converting & Packaging	Sd Sustainable Design	Data Science & Analytics	Sensors	Connected Systems	Fe Flexible Electronics	Skin & Wound Management
Dental & Orthodontic Materials	Nano- technology	Rm Release Materials	Micro- replication	Pp Polymer Processing	Thin Film & Plasma Processing	Inspection & Measurement	We Accelerated Weathering	Es Electronic Systems	Software Solutions	Dd Drug Delivery	Fp Filtration & Purification	Tm Thermal Management
Materials			Processing		Capabilities		Dig	Digital		Applications		

3M

3M Technologies for the Electronics/5G Market

5G Customer Challenge: Increased Signal Transmission

Why this is a design challenge in 5G

5G Customer Challenge: Increased Signal Transmission

Why this is a design challenge in 5G

NEEDS: Faster Data Speeds, More connected Devices, Decreased Latency

ENABLING: More Streaming/Gaming, Internet of Things, Autonomous Driving

 Table Source: Cisco Visual Networking Index (VNI) Compete Forecast Update Dec 2018

 © 3M 2021. All Rights Reserved.

3M

Driving antenna frequencies up

4G	5G	5G	WiGig	6G
0.7 to 2.6 GHz	3.5 to 6 GHz	28 to 39 GHz	60 GHz	100 GHz to 3 THz
	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$			

New materials needed to offset loss

Signal Loss α (F * Df * \sqrt{Dk})

- Higher frequency increases loss
- Materials needed with better dielectric properties to help reduce loss

Dk = dielectric constant Df = dissipation factor

3M[™] Glass Bubbles

Reduces Dk and Df in composite materials

Technology

3M[™] Glass Bubbles

Small hollow, thin walled, unicellular spheres primarily composed of soda-lime borosilicate glass

Property	Value						
Shape	Hollow, thin walled, unicellular spheres						
Color	White						
True Density [†]	0.32 - 0.60 g/cc						
Crush Strength*	6000 – 28,000 psi						
Softening Temp	>600° C						
Average Dia	15 - 25 microns						
Moisture	<0.5%						
Dielectric Constant (Dk) @10GHz	1.2-1.5						
Dissipation Factor (Df) @10GHz	0.003-0.005						

Note: The data presented is not for specification purposes

© 3M 2021. All Rights Reserved.

Why is it important to 5G?

Impact Dk & Df

3M

Glass Bubbles Volume %

Glass Bubbles Volume %

3M[™] Glass Bubbles for Light-weighting and 5G

RF Transparency, Density Modification, Low Dielectric Constant and Loss

Low Dielectric PCBs

Antenna Transmission Window

Radome Enclosure

5G Benefit for Internet of Things (IoT)

AR/VR & Video Streaming

Smart City

Telemedicine

Autonomous Driving

Copper Clad Laminate for Printed Circuit Boards

Application Specific Design Challenges:

Problem to Solve:

- Signal / Frequency loss between layers
- Delamination between layers
 - Adhesion Performance
 - Material Expansion (CTE)
- Improve overall cost attractiveness
- Thermal management
- Reduction of overall weight of CCL

3M[™] Nextel[™] Ceramic Fibers

RF Transparent and High Modulus

	Why is it important to 5G?								
c Fibers?	Low Df Properties, High Modulus	Resin	Properties	Units	15V% Ceramic Fiber Chopped	30V% Ceramic Fiber Chopped	30V% e- Glass Fiber Chopped	53V% Ceramic Fiber	316 Stainless Steel**
	-		Tensile Modulus @ Break	GPa	18	34	15		
with	 Metal-like 	Polyamide (PA)	Dielectric Constant (Dk)	9.5 GHz	3.73	4.4	3.89		
vvitti	mechanical		Dielectric Loss (Df)	9.5 GHz	0.008	0.007	0.01		
	properties	Polycarbonate (PC)	Tensile Modulus @ Break	GPa	16	35	14		
	 RF transparent 		Dielectric Constant (Dk)	9.5 GHz	3.51	4.34	3.65		
	 2X stiffness of GF at 		Dielectric Loss (Df)	9.5 GHz	0.004	0.004	0.007		
	same vol.%	PBT	Tensile Modulus @ Break	GPa		31	17		
	 Ability to thin-wall a 		Dielectric Constant (Dk)	9.5 GHz		4.43	3.74		
	design		Dielectric Loss (Df)	9.5 GHz		0.003	0.007		
	 Match CTE of 		Tensile Modulus @ Break	GPa				181*	160-200
	metal/aluminum	Ероху	Dielectric Constant (Dk)	9.5 GHz				6.4	N/A
	 Fasily processed via 		Dielectric Loss (Df)	9.5 GHz				0.01	N/A

*Chopped fiber = 3mm, *53V% Data on 0° laminate, **316 SS properties depend on composition and processing

NOTE: All the data in this table is not for specification purposes. This data is for reference only to show typical property values.

The data presented is not for specification purposes

Technology

What are Nextel [™] Ceram

Continuous Aluminum Oxide fibers that structurally reinforce to help improve modulus of the composite simultaneous electrical insulation

- 3M[™] Nextel[™] Fibers has the highest known modulus of all continuous, RF transparent fibers
- Low Df, RF transparent
- Excellent chemical resistance
- Thermal conductivity >1.7X vs. chopped glass fiber PMC
- Efficient mfg vs. CNC metal or monolithic ceramic

injection or compression

molding

3M™ Nextel™ Fiber Applications in Electronic Devices

Application Areas:

- Replace metal or carbon fiber composite parts/frames/antenna splits for RF transparency, while providing stiffness and protection
- Parts requiring thin, stiff characteristics where other materials may fail

Transmission Loss Test Set-up for 28 – 78GHz

S21(transmission) measurement using VNA (Vector network analyzer)

Transmission Loss Compared to Air and Steel

Transmission Loss Between 26.5 and 39GHz

- Continuous ceramic fiber compared to GF at 54vol% in an epoxy PMC
- Depending on thickness and frequency, there are ranges where CeF is better than GF

Transmission Loss Compared to Air and Steel

Transmission Loss Between 71 and 86GHz

- Continuous ceramic fiber compared to GF at 54vol% in an epoxy PMC
- Depending on thickness and frequency, there are ranges where CeF is better than GF

Summary

- 3M has material solutions for next generation devices 5G and mmWave
- 3M[™] Glass Bubbles can be used as a low dielectric additive in polymer composites used in antenna grade PCB CCL, electrical connectors, radome enclosures
 - Reduce signal loss/issues
 - Lower CTE to prevent solder breakage and delamination
- 3M[™] Nextel[™] Ceramic Fibers can be extruded or prepregged with plastic matrices and efficiently molded into parts benefiting antenna applications
 - RF transparency
 - Low loss (Df) at 5G wavelengths
 - Structural mechanical properties
 - Design freedom; thin walling, ease of processing (e.g. injection moldable) and color matching

Questions?

<u>3M.com/5GAST</u>

Warranty, Limited Remedy, and Disclaimer: Many factors beyond 3M's control and uniquely within user's knowledge and control can affect the use and performance of a 3M product in a particular application. User is solely responsible for evaluating the 3M product and determining whether it is fit for a particular purpose and suitable for user's method of application. User is solely responsible for evaluating third party intellectual property rights and for ensuring that user's use of 3M product does not violate any third party intellectual property rights. Unless a different warranty is specifically stated in the applicable product literature or packaging insert, 3M warrants that each 3M product meets the applicable 3M product specification at the time 3M ships the product. 3M MAKES NO OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY IMPLIED WARRANTY OF NON-INFRINGEMENT OR ANY IMPLIED WARRANTY OR CONDITION ARISING OUT OF A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE. If the 3M product does not conform to this warranty, then the sole and exclusive remedy is, at 3M's option, replacement of the 3M product or refund of the purchase price.

Limitation of Liability: Except where prohibited by law, 3M will not be liable for any loss or damages arising from the 3M product, whether direct, indirect, special, incidental or consequential, regardless of the legal theory asserted, including warranty, contract, negligence or strict liability.

Technical Information: Technical information, recommendations, and other statements contained in this document or provided by 3M personnel are based on tests or experience that 3M believes are reliable, but the accuracy or completeness of such information is not guaranteed. Such information is intended for persons with knowledge and technical skills sufficient to assess and apply their own informed judgment to the information. No license under any 3M or third party intellectual property rights is granted or implied with this information.

• Export Control: The 3M product(s) listed here may be controlled commodities under applicable U.S. export control laws and regulations, including, but not limited to, the U.S. International Traffic in Arms Regulations (ITAR) and the Export Administration Regulations (EAR). These laws and regulations may, among other things, prohibit the export and/or reexport of controlled product(s) to any or all locations outside of the United States without prior U.S. Government export authorization, the sharing of export controlled technical data and services with those anywhere who are not U.S. citizens or U.S. permanent residents, dealings with U.S. Government, United Nations and other "Restricted Parties," and proliferation activities including those that further nuclear, chemical, or biological warfare, missile stockpiling/use, or the use of rockets or unmanned aerial vehicle systems. 3M and purchasers or prospective purchasers of the 3M product(s) shall comply with all applicable export control laws and regulations, which may require obtaining and maintaining applicable export control authorization or licenses, and understand that the ability of a party to obtain or maintain such authorization or license is not guaranteed. The exporter of record has the sole responsibility to determine whether the export or subsequent reexport of the 3M product(s) requires export authorization. An explicit condition to 3M selling or making available the 3M product(s) is the customer's agreement to comply with all applicable trade compliance laws and regulations.

