

Evaluation of 3M[™] Organic Vapor Monitor, 3500+, 3510+

1. Background

Sampler Validation consists of lab tests designed to demonstrate that a Sampler functions as claimed. Since the scope of the claim includes a range of environmental conditions that may exist in the environments sampled, exposure conditions are varied so that each reader may consult the data herein to determine the suitability of a Sampler for a particular application. Protocols published by NIOSH(a), ANSI/ISEA(b), ASTM(c), CEN(d) have been consulted in selecting the tests performed in these studies.

(a) Cassinelli, M.E., Hull, R.D, Crable, J.V., and Teass, A.W., "Protocol for the Evaluation of Passive Monitors," in Diffusive Sampling, Royal Society of Chemistry, London, England, 1987, pp. 190-202.

(b) ANSI/ISEA 104-1998 (R2015)

(c) ASTM D6246-98

(d) EN 838:1996

2. Facilities, Equipment & Apparatus

Facilities in a chemical challenge laboratory were used including laboratory benches and sinks, fume hoods, exposure chambers, lab ware, pumps, chemical reagents, and safety devices. Extraction and analysis of test and reference samplers were conducted in Assay Technology's AIHA-accredited industrial hygiene test labs including benches, sinks, hoods, etc. as well as gas chromatographs. In some cases, test and reference samplers were presented with "natural" exposures in a field environment and analyzed by other accredited Labs.

3. Plan of Study

In the chemical challenge lab, dynamic (flowing and continuously renewed) test atmospheres were typically generated by controlled vaporization of liquid analytes metered into a flowing stream (with heating when required) from the Miller-Nelson HCS 401 or 501 Atmosphere Generator at a controlled flow rate, temperature, and relative humidity.

The atmosphere generated was conducted through inert tubing into an exposure chamber which featured an inert inner compartment in which generated vapors flow by each set of samplers at the same time (Fig 1). The desired linear flow velocity at the sampler's face was developed by a DC motor driven fan installed in the inner compartment and near to the samplers. Reference samplers were typically active samplers in which the front end penetrated the test chamber while the back end was connected to a critical orifice air sampler external to the exposure chamber.

After exposures, all samplers were capped and submitted to an accredited IH lab which extracted samplers and performed the analysis. Typically, results were analyzed by direct comparison of test samplers to reference samplers.

Dynamic atmospheres generated under variable environmental conditions were designed to challenge the samplers as suggested in the referenced test protocols to demonstrate sampler performance under the challenge conditions.

3.1 Nominal Uptake (Sampling) Rate Determination

Constant concentrations of several analytes were generated and presented to several test and reference samplers concomitantly during a fixed duration. This test was repeated for several groups each containing multiple analytes at different exposure concentrations and times deemed appropriate for the particular analyte. Replicate results for each analyte at multiple concentrations were assessed to determine average uptake (sampling) rate.

3.2 Air Velocity/Sampler Orientation

A constant concentration of analyte was generated and presented to several test and reference samplers as in Section 3.1. The tests were repeated at high and low values of air velocity and different orientations, after which the amounts recovered from test and reference samplers were compared to assess any differences due to air velocity or orientation.

3.3 Analyte Loss by Evaporation (Reverse Diffusion)

A constant concentration of selected volatile analytes was generated and presented to several test samplers as in Section 3.1. After a short exposure (1-2 hr), diffusive samplers were split into two groups. Group 1 was capped and stored for analysis, while Group 2 was returned to the chamber and subjected to a zero concentration exposure (pure air only) for another 4-6 hours (to later assess for analyte loss compared to the capped, stored controls. After exposure completion, samplers were capped and submitted for analysis. Analyte recovery for Group 2 was compared to recovery from Group 1 to determine the degree of analyte loss (due to reverse diffusion).

3.4 Effect on Uptake (Sampling) Rate of Temperature & Relative Humidity

A constant concentration of selected volatile analytes was generated and presented to several test and reference samplers as in Section 3.1 with temperature and humidity controlled at extreme values. The amount of analyte recovered from the sampler groups exposed at different extreme temperatures and humidities were compared with charcoal tubes subject to the same exposure to assess the effects of temperature and %RH on sampling rate.

3.5 Analyte Stability on Storage (after exposure)

A constant concentration of selected volatile analytes was generated and presented to test samplers as in Section 3.1. After a typical exposure (2-4 hr), diffusive samplers were split into several groups, and each groups was capped and stored for a specified storage conditions, e.g, Group 1 (freezer at -20C), Group 2 (room temperature at 20-25C), Group 3 (frig at 2-8C). Freezer samples were analyzed as controls. Each separate storage group was submitted to an accredited IH Lab, then extracted and analyzed after specific storage times, e.g., 1 week, 2 weeks, etc. The amount of analyte recovered from the different sampler Groups at different storage times were compared to assess analyte stability on the sampler.

3.6 Background Blank

Several test samplers were extracted and analyzed by the lab in the same fashion as in Sections 3.1- 3.5. The amount of analytes (if any) found in micrograms were reported to confirm the validity of the claimed Reporting Limit for each analyte.

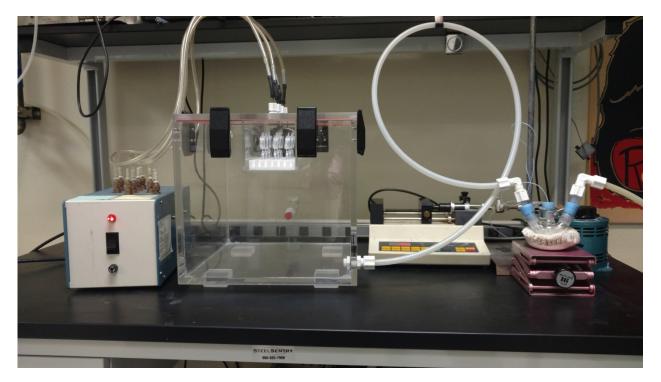


Fig 1Test Chamber Used for Laboratory Evaluation of Samplers

Results Are Summarized in Following Tables.

Table 3.1.1

Typical Uptake (Sampling) Rate Determination

Analyte	Target	Sampl'g	Sampler		Ar	noun	t Found		Sampling
	Concn	Time	Tested	Qty	Tube		Badge		Rate
	(µg/L)	(min)			(µg/L)	(<u>+</u>)	(µg)	(<u>+</u>)	(L/min)
	504	120	3500+/3510+	5	346	9%	576	3%	0.0139
Acetone	252	120	3500+/3510+	5	167	1%	292	2%	0.0145
							Average	=	0.0142
Bonzono	64	120	3500+/3510+	5	34	8%	43.6	2%	0.0108
Benzene	32	120	3500+/3510+	5	17	1%	22	0%	0.0110
							Average	=	0.0109
Dorohloroothuloroo	251	120	3500+/3510+	5	245	7%	238	2%	0.00811
Perchloroethylene	129	120	3500+/3510+	5	117	3%	120	0%	0.00852
							Average	=	0.00831
Guelahavana	503	120	3500+/3510+	5	477	9%	520	2%	0.00908
Cyclohexane	251	120	3500+/3510+	5	232	2%	262	2%	0.00943
						_	Average	=	0.00926
1.2 Disklausethere	126	120	3500+/3510+	5	116	8%	138	3%	0.00989
1,2-Dichloroethane	65	120	3500+/3510+	5	57	5%	68.8	2%	0.01014
							Average	=	0.01002
	63	120	3500+/3510+	5	78	10%	99.6	1%	0.01061
Methylene Chloride	31	120	3500+/3510+	5	39	1%	52	2%	0.01114
							Average	=	0.0109
Chloreform	127	120	3500+/3510+	5	105	9%	170	0%	0.01344
Chloroform	63	120	3500+/3510+	5	51	1%	59.2	3%	0.00966
				_			Average	=	0.0115
Tabada das faisas	313	120	3500+/3510+	5	247	9%	292	4%	0.00986
Tetrahydrofuran	156	120	3500+/3510+	5	121	3%	142	3%	0.00981
							Average	=	0.0098
	313	120	3500+/3510+	5	267	8%	180	1%	0.00561
Toluene	158	120	, 3500+/3510+	5	132	3%	150	0%	0.00950
							Average	=	0.0076
	252	120	3500+/3510+	5	213	9%	218	2%	0.00853
Xylenes	126	120	3500+/3510+	5	103	3%	106	5%	0.00855
							Average	=	0.0085

Table 3.1.2

Typical Uptake (Sampling) Rate Determination

Analyte	Target	Sampl'g	Sampler		Ar	noun	t Found		Sampling
	Concn	Time	Tested	Qty	Tube		Badge		Rate
	(µg/L)	(min)			(µg/L)	(+)	(µg)	(+)	(L/min)
1 1 1 Trichloroothana	387	120	3500+/3510+	5	325	8%	322	3%	0.0083
1,1,1-Trichloroethane	196	120	3500+/3510+	5	159	3%	156	4%	0.0082
							Average	=	0.0082
1 Dutanal	264	120	3500+/3510+	5	164	8%	192	4%	0.0097
1- Butanol	133	120	3500+/3510+	5	60	24%	83.4	5%	0.0116
				_			Average	=	0.0107
	68	120	3500+/3510+	5	27	3%	28.4	4%	0.0087
2- Butoxyethanol	34	120	3500+/3510+	5	12	23%	13.4	4%	0.0092
							Average	=	0.0089
	67	120	3500+/3510+	5	50	8%	85.6	4%	0.0143
Acetonitrile	34	120	3500+/3510+	5	24	1%	43.4	4%	0.0149
							Average	=	0.0146
	332	120	3500+/3510+	5	287	7%	286	3%	0.0083
Heptane	164	120	3500+/3510+	5	137	13%	82.2	10%	0.0050
							Average	=	0.0067
	531	120	3500+/3510+	5	454	9%	648	4%	0.0119
Isopropyl Alcohol	265	120	3500+/3510+	5	227	2%	320	3%	0.0117
		-	, ,	-			Average	=	0.0118
	398	120	3500+/3510+	5	299	10%	384	3%	0.0107
Methyl Ethyl Ketone	198	120	3500+/3510+	5	148	2%	186	3%	0.0105
							Average	=	0.0106
	135	120	3500+/3510+	5	70	7%	47.4	4%	0.0057
Methyl Methacrylate	66	120	3500+/3510+	5	25	10%	22.6	4%	0.0075
				2		_3/3	Average	=	0.0066
			· · ·						-
Naphthalene	68	120	3500+/3510+	5	41	3%	47	3%	0.0095
	31	120	3500+/3510+	5	23	16%	27.8	3%	0.0099
							Average	=	0.0097

Table 3.1.3

Typical Uptake (Sampling) Rate Determination

Analyte	Target	Sampling	Sampler		Α	moun	t Found		Sampling
	Concn	Time	Tested	Qty	Tube		Badge		Rate
	(µg/L)	(min)			(µg/L)	(+)	(µg)	(+)	(L/min)
	96	120	3500+/3510+	5	72	Nom	67.4	3%	0.00777
Cyclohexanone	48	120	3500+/3510+	5	36	Nom	34.2	1%	0.00789
			· · ·				Average	=	0.00783
	490	120	3500+/3510+	5	522	5%	596	3%	0.0095
Ethyl Acetate	245	120	3500+/3510+	5	261	2%	306	2%	0.0098
							Average	=	0.0096
5.1 U	69	120	3500+/3510+	5	73	1%	70.2	6%	0.0080
Ethylbenzene	35	120	3500+/3510+	5	35	8%	37.4	1%	0.0088
				_		_	Average	=	0.0084
Usuana	483	120	3500+/3510+	5	380	4%	390	2%	0.0085
Hexane	241	120	3500+/3510+	5	190	1%	210	0%	0.0092
				_		_	Average	=	0.0089
	103	120	3500+/3510+	5	87	4%	108	4%	0.0104
Isobutyl Alcohol	52	120	3500+/3510+	5	43	1%	54.2	4%	0.0106
							Average	=	0.0105
	246	120	3500+/3510+	5	223	3%	240	4%	0.0090
Hexone (MIBK)	123	120	3500+/3510+	5	109	4%	120	0%	0.0092
							Average	=	0.0091
N,N-Dimethyl	123	120	3500+/3510+	5	103	6%	170	3%	0.0137
Formamide	61	120	3500+/3510+	5	51	7%	73.8	4%	0.0120
							Average	=	0.0129
Propylene Glycol	297	120	3500+/3510+	5	221	4%	212	4%	0.0080
Methyl Ether Acetate	149	120	3500+/3510+	5	107	8%	106	5%	0.0083
				_		_	Average	=	0.0081
t Dutyl Asstate	195	120	3500+/3510+	5	193	3%	180	3%	0.0078
t-Butyl Acetate	97	120	3500+/3510+	5	96	4%	96	1%	0.0084
							Average	=	0.0081
Trichloroethylene	296	120	3500+/3510+	5	235	3%	252	3%	0.0089
memoroethylene	148	120	3500+/3510+	5	116	3%	130	0%	0.0093
							Average	=	0.0091

Table 3.2

Air Velocity/Sampler Orientation

Analyte(s)	Target	Air	Sampler	Sampler		Amount	Found	Comparison	
Tested	Concn	Velocity	Oriented	Tested	Qty	Ave	(<u>+</u>)	to Tube	
	(ppm)	(cm/sec)				(ppm)	(%)	(%)	
					. <u> </u>				
			perpendicular	C Tube	3	6.36	5%	100%	
1,1-dichloro-2,2,2-trifluoroethane	8	153	perpendicular	Monitor	6	6.28	10%	99%	
			parallel	Monitor	5	6.50	5%	102%	
			perpendicular	C Tube	5	53.6	9%	100%	
1,1-dichloro-2,2,2-trifluoroethane	60	19	perpendicular	Monitor	6	58.1	4%	109%	
			parallel	Monitor	5	54.1	5%	101%	

Table 3.3.1

Analyte Loss by Evaporation

(Reverse Diffusion or Back Diffusion)

		A II Data		Out	iers Ren	oved		
	% Init	tial Ree	covery	% Ini	tial Re	covery		
	f	ound aft	er	found after				
Analyte	2 hr	4 hr	8 hr	2 hr	4 hr	8 hr		
Acetone	97	96	92	96	94	93		
Acetone	101	97	95		N/C			
Acetonitrile	89	84	76	89	84	76		
Acetonitrile	91	86	84		N/C			
Acetonitrile (0.5 PEL, solo)	93	88	79	93	86	79		
Acetonitrile (2.0 PEL, solo)	92	88	77		N/C			
Acrylonitrile	95	94	89		N/C			
Benzene	98	95	96		N/C			
Butanol	102	101	99		N/C			
2-Butoxyethanol (solo)	108	104	107	104	104	107		
2-Butoxyethanol	109	102	93		N/C			
Butyl (n) Acetate	100	102	104		N/C			
Carbon Tetrachloride	102	98	91		N/C			
Chloroform	102	100	93		N/C			
Cyclohexane	101	98	89	101	89	89		
Cyclohexane	111	103	92		N/C			
Cyclohexanone	99	99	96		N/C			
Diacetone Alcohol	94	93	88		N/C			
Dimethylformamide	96	95	80		N/C			
Dimethylformamide	102	99	86		N/C			
Ethanol	90	87	81	95	92	86		
Ethanol	96	94	86		N/C			
2-Ethoxylethanol	100	98	102		N/C			
Ethyl Acetate	103	100	100		N/C			
Ethyl Benzene	105	101	101		N/C			
Ethyl Ether	94	99	99		N/C			
Ethylene Dichloride	95	99	95		N/C			
Heptane	97	103	94	95	105	90		
Hexane	95	101	90	91	105	82		
Isobutanol	101	99	95		N/C			
Isobutyl Acetate	100	102	102		N/C			

Table 3.3.2

Analyte Loss by Evaporation

(Reverse Diffusion or Back Diffusion)

		All Data		Outl	iers Rem	oved
		tial Red	-		ial Red	-
		ound aft			ound aft	
Analyte	2 hr	4 hr	8 hr	2 hr	4 hr	8 hr
Isopropanol	97	96	91	97	98	93
Isopropanol	94	95	93		N/C	
Isopropyl Acetate	97	100	100		N/C	
Mesitylene	99	100	98		N/C	
Methylene Chloride	93	91	88	95	93	90
Methylene Chloride	96	93	90		N/C	
Methylene Chloride, 546	95	93	90		N/C	
Methyl Ethyl Ketone	98	98	96	100	101	99
Methyl Ethyl Ketone	98	95	102		N/C	
Methyl Isobutyl Ketone	97	94	95		N/C	
Methyl Methacrylate	103	100	98		N/C	
Nonane	99	101	96		N/C	
Octane	99	102	96		N/C	
Pentane	91	97	84	85	98	73
Perchloroethylene	94	95	93		N/C	
Propanol (n)	93	93	90	100	101	97
Propanol (n)	103	101	99		N/C	
Propyl Acetate	103	99	100		N/C	
Propyleneglycolmethylether	103	99	94		N/C	
Styrene	94	96	95		N/C	
1122-Tetrachloroethane	101	104	94		N/C	
Tetrahydrofuran	98	96	91	98	98	94
Tetrahydrofuran	97	94	92		N/C	
Toluene	97	96	97		N/C	
111-Trichloroethane	89	81	81		N/C	
Trichloroethylene	97	95	94		N/C	
112-Trichlorotrifluoroethane	89	81	80		N/C	
Vinyl Chloride	93	87	80		N/C	
m-Xylene	98	96	99		N/C	

Table 3.4

Effect on Uptake (Sampling) Rate of Temperature & Relative Humidity

Analyte(s)	Target	Test	Test	Sampler		Amount	Found	Comparison
Tested	Concn	Temp	Humidity	Tested	Qty	Ave	(<u>+</u>)	to Tube
	(ppm)	(°C)	(%RH)			(ppm)	(%)	(%)
1.1. dia blance 0.0.0 triffusore atheres	100	40	44	C Tube	4	101	3%	100%
1,1-dichloro-2,2,2-trifluoroethane	100	10	10 14	Monitor	6	113	6%	112%
		1	1	C Tuba	4	106.0	5%	100%
1,1-dichloro-2,2,2-trifluoroethane	100	40	15	C Tube	4			
	100	-10	10	Monitor	6	111.5	3%	105%
4.4 diablana 0.00 triffusana athan a	100	10	74	C Tube	4	98.1	3%	100%
1,1-dichloro-2,2,2-trifluoroethane	100	10 74		Monitor	6	105.1	3%	107%
			1	C Tube	3	96.6	3%	100%
1,1-dichloro-2,2,2-trifluoroethane	100	40	72	Monitor	-			
.,. <u></u> ,_,_,_ undorooundino		10	40 72		6	97.7	4%	101%

Table 3.5

Analyte Stability on Storage

(after exposure)

			1	%	of Initia	l Recov	ery			
			found after							
Analyte	0 days	RSD(<u>+</u>)	4 days	RSD(<u>+</u>)	7 days	RSD(<u>+</u>)	14 days	RSD(<u>+</u>)		
-	(µg)		(%)		(%)		(%)			
Acetone	719	1.1%	103	2.2%	106	1.3%	104	1.6%		
Acetonitrile	26	2.9%	97	3.9%	100	2.3%	101	0.9%		
Benzene	27	5.5%	99	0.5%	99	2.6%	96	2.5%		
Butanol (n)	56	0.7%	99	0.9%	96	2.2%	97	1.6%		
2-Butoxyethanol	16	5.6%	95	2.3%	81	2.8%	105	4.6%		
Butyl (n) Acetate	296	1.3%	100	3.0%	99	1.9%	103	8.1%		
Carbon Tetrachloride	36	5.4%	82	4.1%	84	4.6%	88	4.3%		
Chloroform	26	4.7%	95	0.9%	98	4.3%	94	3.0%		
Cyclohexane	385	1.8%	96	7.1%	92	3.3%	84	0.9%		
Cyclohexanone	32	0.9%	102	6.2%	107	1.7%	87	2.1%		
Diacetone Alcohol	45	9.3%	93	4.8%	113	1.8%	102	6.5%		
Dimethylformamide	25	1.3%	94	2.1%	97	4.1%	90	4.0%		
2-Ethoxylethanol	222	4.2%	95	2.1%	95	2.0%	95	4.0%		
Ethyl Acetate	696	2.7%	101	1.7%	104	2.8%	97	0.7%		
Ethyl Benzene	197	3.4%	108	2.2%	103	1.4%	105	2.3%		
Ethyl Ether	478	1.8%	102	3.2%	105	0.7%	102	2.9%		
Ethylene Dichloride	28	1.3%	101	3.0%	105	6.4%	106	3.1%		
Heptane	681	10.9%	94	1.5%	97	2.3%	92	5.1%		
Hexane	78	15.9%	93	5.6%	104	2.8%	96	11.0%		
Isobutanol	72	2.6%	97	1.4%	98	2.3%	97	3.7%		
	/-	2.070	57	1.170	50	2.370	57	5.7 70		
Isobutyl Actetate	320	1.5%	92	3.0%	99	2.1%	102	8.4%		
Isopropanol	330	1.8%	105	1.5%	108	2.4%	105	1.8%		
Isopropyl Acetate	463	2.2%	103	3.0%	100	1.7%	99	7.3%		
Mesitylene	403	2.8%	104	6.7%	101	2.4%	102	2.2%		
Methylene Chloride	655	4.5%	96	2.5%	99	1.7%	99	1.2%		
Methyl Ethyl Ketone	212	7.1%	97	4.7%	100	0.9%	101	2.2%		
Methyl Isobutyl Ketone	78	1.3%	104	3.3%	95	1.4%	98	4.0%		
Methyl Methacrylate	171	4.5%	104	1.9%	108	3.9%	101	3.7%		
Nonane	606	8.5%	97	0.7%	99	2.2%	97	2.9%		
	635	10.0%	96	0.5%	100	1.4%	96	3.8%		
Octane	035	10.0%	90	0.5%	100	1.4%	90	5.0%		
Pentane	546	17.7%	90	10.3%	99	4.6%	89	13.6%		
Perchloroethylene	70	2.2%	108	3.7%	99 107	8.2%	105	4.4%		
•										
Propanol (n)	411	1.2%	99	0.4%	102	2.8%	97	5.9%		
Propyl Acetate	390	1.4%	98	1.4%	100	2.6%	102	1.0%		
Propylenegylcolmethylether	135	3.0%	103	4.4%	104	1.3%	110	3.8%		
Styrene	95	1.2%	106	3.6%	107	8.0%	103	3.4%		
1122-Tetrachloroethane	20	1.5%	96	1.6%	98	3.0%	92	2.3%		
Tetrahydrofuran	189	9.7%	101	3.4%	103	1.0%	102	3.3%		
Toluene	147	5.9%	109	1.0%	107	2.2%	107	2.3%		
111-Trichloroethane	694	6.6%	107	1.9%	114	3.2%	116	0.6%		
112-Trichlorotrifluoroethane	2201	8.1%	101	4.9%	98	3.1%	111	8.0%		
Vinyl Chloride	11	4.0%	114	3.5%	119	0.2%	111	2.9%		
m-Xylene	126	6.1%	113	1.4%	115	2.0%	110	3.0%		

Table 3.6.1

Background Blank

Analyte	Sampler	<mark>Spike</mark> Amt, (μg/mL)	Reporting Limit (µg)	Reporting Limit (µg/mL)	Blank Value (μg/mL)	Recovery (µg/mL)
1,1,1 Trichloroethane	3500+/3510+	1.48	3.0	1.5	<0.2	1.281
1,2 DCB	3500+/3510+	0.24	0.5	0.3	0.2	0.354
1,2 Dichloroethane	3500+/3510+	0.98	2.0	1.0	<0.2	0.956
1,2 Dichloroethylene trans	3500+/3510+	1.00	2.0	1.0	<0.2	0.000
1,2-Dibromoethane	3500+/3510+	0.96	2.3	1.2	<0.2	0.000
1,3-Butadiene	3500+/3510+	0.30	0.6	0.3	<0.2	0.213
1,3-Dioxolane	3500+/3510+	0.99	2.0	1.0	<0.2	0.936
1,4 DCB	3500+/3510+	0.45	1.0	0.5	<0.2	0.510
1-4 Dioxane	3500+/3510+	0.93	2.0	1.0	<0.2	0.912
1-Butanol	3500+/3510+	0.50	1.0	0.5	<0.2	0.439
1-Methyl-2-Pyrrolidinone	3500+/3510+	5.47	11.0	5.5	<0.2	0.000
2-Ethoxyethanol	3500+/3510+	0.49	2.0	1.0	<0.2	0.604
2-Ethyl-1-hexanol	3500+/3510+	2.50	2.5	5.0	0.2	0.000
2-Hexanone	3500+/3510+	0.24	0.5	0.3	<0.2	0.185
2-Methoxyethyl Acetate	3500+/3510+	2.48	5.0	2.5	<0.2	5.168
2-Methoxyethanol	3500+/3510+	0.92	2.2	1.1	<0.2	0.000
3-Pentanone(DIEK)	3500+/3510+	0.68	3.0	1.5	<0.2	0.000
4-Vinylcyclohexene	3500+/3510+	0.15	0.3	0.2	<0.2	0.000
Acetonitrile	3500+/3510+	0.59	1.4	0.7	0.4	0.561
Acetophenone	3500+/3510+	2.48	5.0	2.5	<0.2	0.000
AK-225	3500+/3510+	1.02	2.0	2.0	<0.2	0.000
Amyl acetate	3500+/3510+	0.38	0.9	0.5	<0.2	0.423
Aniline	3500+/3510+	0.29	0.6	0.3	<0.2	0.290
Benzene	3500+/3510+	0.20	0.4	0.2	<0.2	0.248
Benzene-D6	3500+/3510+	0.19	0.4	0.2	<0.2	0.000
Benzyl Chloride	3500+/3510+	0.17	0.5	0.3	<0.2	0.240
beta-Pinene	3500+/3510+	0.20	0.4	0.2	<0.2	0.000
Butyl Carbitol	3500+/3510+	4.99	10.0	5.0	<0.2	0.000
Camphor	3500+/3510+	0.30	0.6	0.3	<0.2	0.000
Cumene	3500+/3510+	0.25	0.5	0.3	<0.2	0.255
Cyclohexane	3500+/3510+	0.28	0.6	0.3	<0.2	0.301
Cyclohexanone	3500+/3510+	0.26	0.6	0.3	<0.2	0.379
Cyclohexanol	3500+/3510+	0.28	0.7	0.4	<0.2	0.272
D P Glycol Methyl Ether	3500+/3510+	7.16	17.0	8.5	<0.2	0.000
Diacetone	3500+/3510+	0.47	1.0	0.5	<0.2	0.526
Dicyclopentadiene	3500+/3510+	0.84	2.0	1.0	<0.2	0.990
Dibromoethane	3500+/3510+	1.49	3.0	1.5	<0.2	1.379
Dodecane	3500+/3510+	2.48	5.0	2.5	<0.2	2.192
Epichlorohydrin	3500+/3510+	0.57	1.2	0.6	<0.2	0.497
Ethanol	3500+/3510+	5.00	10.0	5.0	<0.2	3.838
Ethy Methacrylate	3500+/3510+	0.50	1.0	0.5	<0.2	0.448
Ethyl Acetate	3500+/3510+	1.00	2.0	1.0	<0.2	0.794
Ethyl Benzene	3500+/3510+	0.25	0.5	0.3	<0.2	0.231

Table 3.6.2

Background Blank

	_	Spike	Reporting	Reporting	Blank	Recovery
Analyte	Sampler	Amt,	Limit (µg)	Limit	Value	(µg/mL)
Ethylong Chlarabydrin	2500 /2540	(µg/mL)		(µg/mL)	(μg/mL)	0.020
Ethylene Chlorohydrin Ethyl Ether	3500+/3510+	0.65	1.4	0.7	<0.2	0.830
Ethyl Lactate	3500+/3510+ 3500+/3510+	1.50 0.42	3.0 1.0	1.5 0.5	<0.2 <0.2	0.400
Heptane	3500+/3510+	0.42	0.5	0.3	<0.2	0.400
Hexane	3500+/3510+	0.25	0.5	0.3	<0.2	0.234
Isobutyl Acetate	3500+/3510+	0.23	1.0	0.5	<0.2	0.440
Isobutyl alcohol	3500+/3510+	0.34	0.7	0.3	<0.2	0.280
Isooctane	3500+/3510+	0.48	1.5	0.8	<0.2	0.525
Isophorone	3500+/3510+	0.28	0.6	0.3	<0.2	0.302
Isopropyl Acetate	3500+/3510+	0.44	1.0	0.5	<0.2	0.405
Isopropyl Alcohol	3500+/3510+	0.50	1.0	0.5	<0.2	0.520
Limonene	3500+/3510+	0.84	2.0	1.0	<0.2	0.638
m,p-Xylene	3500+/3510+	0.50	1.0	0.5	<0.2	0.527
Methanol	3500+/3510+	1.50	3.0	1.5	<0.2	1.111
Methyl Acetate	3500+/3510+	0.34	1.0	0.5	<0.2	0.366
Methyl Ethly Ketone	3500+/3510+	0.40	0.8	0.4	<0.2	0.408
Methyl Ethyl Ketoxamine	3500+/3510+	0.72	1.4	0.7	<0.2	1.020
Methyl Isoamyl Ketone	3500+/3510+	0.24	0.5	0.3	<0.2	0.213
Methyl Isobutyl Ketone	3500+/3510+	0.34	0.7	0.4	<0.2	0.292
Methyl Methacrylate	3500+/3510+	0.42	1.0	0.5	<0.2	0.423
Methylcyclohexene	3500+/3510+	0.23	0.5	0.3	<0.2	0.230
Methylene Chloride	3500+/3510+	1.49	3.0	1.5	<0.2	1.245
MTBE	3500+/3510+	0.44	0.9	0.5	<0.2	0.652
N,N-Dimethylformamide	3500+/3510+	0.57	1.3	0.7	<0.2	0.463
Naphthalene	3500+/3510+	3.21	6.5	3.3	<0.2	3.980
n-Butyl Acetate	3500+/3510+	0.44	0.9	0.5	<0.2	0.431
N-Nonane	3500+/3510+	0.12	0.5	0.3	<0.2	0.577
n-Propyl Bromide	3500+/3510+	0.81	2.0	1.0	<0.2	1.102
Octane	3500+/3510+	0.84	2.0	1.0	<0.2	0.819
o-Xylene Pentane	3500+/3510+	0.50	1.0	0.5	<0.2	0.517
Perchloroethylene	3500+/3510+ 3500+/3510+	0.25 0.81	0.6 2.0	0.3	<0.2 <0.2	0.264
PGMEA	3500+/3510+	0.42	1.0	0.5	<0.2	0.437
PGMME	3500+/3510+	0.42	2.0	1.0	<0.2	1.441
Propyl Acetate	3500+/3510+	0.49	1.0	0.5	<0.2	0.566
Propylene Oxide	3500+/3510+	0.50	1.0	0.5	<0.2	0.264
Pyridine	3500+/3510+	0.39	0.9	0.5	0.7	0.450
Styrene	3500+/3510+	0.22	0.5	0.3	<0.2	0.110
Tert Butyl Acetate	3500+/3510+	0.86	2.0	1.0	<0.2	0.791
Tetrahydrofuran	3500+/3510+	0.39	0.8	0.4	<0.2	0.519
Toluene	3500+/3510+	1.00	2.0	1.0	<0.2	0.786
Trichloroethylene	3500+/3510+	0.83	2.0	1.0	<0.2	0.978
Vinyl Acetate	3500+/3510+	0.42	1.0	0.5	<0.2	0.359
Vinyl Chloride	3500+/3510+	0.24	0.5	0.3	<0.2	0.239

Personal Safety Division 3M Center, Building 235-2W-70 St. Paul, MN 55144-1000

3M PSD products are occupational use only.

Customer Service: 3M.com/workersafety	1-800-328-1667
In Canada	
Technical Service:	1-800-267-4414
Customer Service:	1-800-364-3577
3M.ca/Safety	

In United States of America Technical Service: 1-800-243-4630

© 3M 2021. All rights reserved. 3M is a trademark of 3M Company and its affiliates.

Used under license in Canada. All other trademarks are property of their respective owners. Please recycle.

