Gas turbines in power plants serve a critical role in helping keep the lights on, data centers running and machines operating in millions of homes and businesses across the United States. Some plants use them as the sole power source, while others primarily use coal but rely on gas turbines to surge their generating capacity during periods of peak demand. The turbines are essential to the utility’s ability to meet its customers’ demands, and help to prevent operational interruptions, which are unacceptable.

Decades ago, power plants used both CO₂ and halon fire suppression systems to protect their critical operations. When the Montreal Protocol was adopted in 1987, halon was designated for a complete global phase out because of its high ozone depletion potential, and CO₂ became the only major gaseous fire protection agent used in power generation. Yet during that time its risks also became increasingly apparent: because it extinguishes fires by displacing oxygen from the protected space, CO₂ is lethal at design concentration. A 2003 report sponsored by the U.S. Environmental Protection Agency found that between 1975 and 1999, there were more than 100 deaths and 150 injuries from CO₂ fire suppression systems, mostly resulting from accidental or false alarms.¹

A safer future without CO₂

When a major western US public power utility contacted Tech Electronics of Colorado to replace the CO₂ fire suppression system control panels in one of its generating stations, those panels and the CO₂ compressors had been experiencing daily fault conditions. Tech Electronics and generating station staff were concerned: a false discharge of CO₂ could endanger workers’ lives.

A thorough review by Tech Electronics determined that the maintenance needs of the aging CO₂ systems protecting the generating station’s five gas turbines had increased to the point where the entire system needed to be replaced. Additionally, due to CO₂’s safety risks, the current National Fire Protection Association Standard on Carbon Dioxide Extinguishing Systems (NFPA 12) states that CO₂ shall not be used in occupiable spaces unless no other technically viable alternative is available from a safety standpoint. New CO₂ systems must also include numerous complex and expensive safety upgrades. Knowing that there had been many advancements in clean agent technology since the original system had been installed, Tech Electronics and the utility decided to explore CO₂ alternatives that could reliably protect their highly sensitive equipment for decades to come while providing a higher margin of safety for their employees.

When considering new systems, one requirement was clear – performance could not be compromised. So when the utility asked Rich Vance, director and sales manager at Tech Electronics, about alternatives to CO₂ fire suppression, 3M™ Novec™ 1230 Fire Protection Fluid immediately came to mind as a potential solution. 3M Novec 1230 fluid has a high margin of safety, has environmentally sustainable properties including zero ozone depletion potential and extremely low global warming potential, and is highly effective at extinguishing fires.

The key question remaining was whether it could meet the electric utility’s requirements for hold time in the protected space. In the event of a fire, stopping a turbine too quickly will cause overheating and permanent damage to the turbine itself, so a fire suppression system must maintain its extinguishing concentration for 20 minutes or more after the initial discharge while the turbines wind down and dissipate heat. Plus, while NFPA 37² only mandates a minimum 20-minute hold time, the utility specified a 60-minute minimum to ensure a 300% margin of protection.

² NFPA 37, Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines, 11.4.4.1, 2018 Edition.
3M™ Novec™ 1230 Fire Protection Fluid exceeds performance expectations.

The electric utility, collaborated with Tech Electronics, 3M, and fire protection systems distributor ETG Fire to develop an extended discharge system using 3M Novec 1230 fluid that would meet all requirements. Based on a preliminary design by Chris Vanderstokker, owner of ETG Fire, the team constructed a scaled test enclosure with the same leakage rate as the actual protected space. Then they developed a new system design using a two-cylinder model, with one cylinder immediately flooding the space with 3M Novec 1230 fluid while the other was equipped with an engineered restricted orifice to control the flow of agent and maintain the extinguishing concentration throughout the extended hold time. It was also designed to enable the extended discharge flow rate to be customized based on the leakage rate of the enclosure, so it could accommodate a range of protected spaces.

The team constructed a scaled down test enclosure and conducted an extensive system validation and optimization process, comparing predicted results against recorded data to ensure that the system consistently reached and maintained design concentration. More than a dozen potential extended discharge nozzles were developed and tested to ensure that the 3M Novec 1230 fluid would effectively vaporize as it slowly discharged into the enclosure.

Finally, a full-scale discharge test at the fully operational generating station proved the worth of a system using 3M Novec 1230 fluid for protecting gas turbines from fire. This real-world test exceeded expectations, with a demonstrated hold time of over 90 minutes – 50% over specifications and 450% over NFPA requirements – effectively protecting the equipment and the company’s power generation operations without the worker safety risks of CO2. After the test, the electric utility immediately began installing new systems using 3M Novec 1230 fluid to protect its facilities. They had found their smart, safe, sustainable CO2 replacement and fire suppression solution for the future of power generation.