A hidden secret for successful clinical outcomes.

Numerous Clinical Studies Demonstrate the Efficacy of Cementing 3M™ Lava™ Zirconia Restorations with 3M™ RelyX™ Unicem Self-Adhesive Resin Cement

Dr. Carola Carrera, DDS, PhD
3M Research Specialist

Geoffrey Morris, PE
3M Scientific Affairs Manager

Clinical dentistry and photography by David Hornbrook, DDS, FAACD
Restorations by Utah Valley Dental Lab
Background

Secondary caries are the most common cause for restoration failure and replacement\(^1\), placing a tremendous burden on the health care system. In addition, the diagnosis and treatment of secondary caries often involve further tooth destruction and weakening of the remaining structure. For these reasons, technologies that minimize or eliminate the root causes are of significant importance. Dysbiotic oral biofilms (oral bacteria) are the main drivers of secondary caries. In the presence of favorable conditions – including the presence of interfacial failure (gaps), poor diet and poor oral hygiene – oral biofilms can thrive and colonize the interface between the restoration and the tooth margin, leading to tooth demineralization and secondary caries formation. Preventing these bacteria from physically finding their way underneath a restoration is therefore considered a strategic method for avoiding secondary caries.

One method of sealing the restoration against bacterial invasion is to engineer the dimensional tolerances of the material such that it mates or fits perfectly to the tooth preparation with no gap at the margin. Significant advances have been made in the ability to manufacture tight fitting restorations, however, a perfect fit is rarely achieved and therefore dental cements are used to fill any gaps that are present.

Dental cements must be engineered to prevent the advance of bacteria even after repeated mechanical loading and thermal cycling events. In addition the cement must be sufficiently inert in the oral environment and not wash out over time.

Materials

3M™ Lava™ Zirconia was introduced commercially more than 15 years ago as an esthetic alternative to metal for crown and bridge restorations. It utilizes computer aided design (CAD) and computer aided manufacturing (CAM) to produce zirconia restorations. A basic process flow diagram for the fabrication of a Lava zirconia restoration is given in the figure below.

![Process Flow Diagram](image)

The ability to predict and uniformly control the shrinkage that occurs during the sintering step was a key design challenge for the ceramic engineers involved with the development of Lava zirconia. If the shrinkage varied or was unpredictable the finished restorations would have poor fit. In vitro studies were performed to determine the accuracy of Lava zirconia restorations with marginal gaps on the order of 25 µm measured\(^3,4\).

3M™ RelyX™ Unicem Self-Adhesive Resin Cement is engineered to be a self-adhesive resin cement with low solubility in the oral environment and appropriate mechanical strength and bonding capability to both the tooth preparation and zirconia ceramics\(^5\). The combination of the accurate fit of Lava zirconia restorations combined with RelyX Unicem cement should seal the restoration against bacterial invasion with the benefit of a low frequency of secondary caries.

The ultimate test however is the clinical performance of the system. Numerous studies have now been conducted to determine all failure modes with zirconia restorations including the occurrence of secondary caries. This specific response was measured in most studies as it is an indirect way to validate the dimensional accuracy of the CAD/CAM manufacturing process.
Clinical Results and Discussion

Two overview articles have been published on the survival rates of multi-unit zirconia based restorations which are considered the most challenging with regard to fit and fidelity. The references cited in these articles were evaluated with regard to the occurrence of secondary caries as assessed by the investigators using various methods. Details can be found in the cited references. The studies found are compiled in the table below and include only those articles in peer reviewed journals.

Conclusions

The studies highlighted with bold type discuss restorations with durations greater than two years. No studies were found which showed the presence of secondary caries when 3M™ Lava™ Zirconia Restorative was used in combination with 3M™ RelyX™ Unicem Self-Adhesive Resin Cement.

<table>
<thead>
<tr>
<th>Author</th>
<th>Restorative Material</th>
<th>Cement</th>
<th>Study Length (Months)</th>
<th># of Restorations Initial/Recall</th>
<th>Secondary Caries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christensen</td>
<td>3M™ Lava™ Zirconia Restorative</td>
<td>3M™ RelyX™ Luting Plus Resin Modified Glass Ionomer Cement</td>
<td>36</td>
<td>293/190</td>
<td>3%</td>
</tr>
<tr>
<td>Zenthofer</td>
<td>3M™ Lava™ Zirconia Restorative</td>
<td>3M™ RelyX™ Unicem Aplicap™/Maxicap™, or Clicker™ Cement</td>
<td>36</td>
<td>21/19</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Gherlone</td>
<td>3M™ Lava™ Zirconia Restorative</td>
<td>3M™ RelyX™ Unicem Aplicap™/Maxicap™, or Clicker™ Cement</td>
<td>36</td>
<td>86/60</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Tischert</td>
<td>Precedent DCS Zirconia</td>
<td>Harvard Zinc Phosphate (posterior), Panavia 21 (anterior)</td>
<td>38</td>
<td>65/58</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Beuer</td>
<td>Cercon Zirconia</td>
<td>3M™ Ketac™ Cem Aplicap™ Glass Ionomer Luting Cement</td>
<td>40</td>
<td>21/21</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Sagirkaya</td>
<td>Various (Lava, ZirkonZahn, Katana)</td>
<td>Panavia F 2.0</td>
<td>48</td>
<td>267/267</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Roediger</td>
<td>Cercon Zirconia</td>
<td>Harvard Zinc Phosphate</td>
<td>48</td>
<td>99/91</td>
<td>3%</td>
</tr>
<tr>
<td>Palaez</td>
<td>3M™ Lava™ Zirconia Restorative</td>
<td>3M™ RelyX™ Unicem Aplicap™/Maxicap™, or Clicker™ Cement</td>
<td>48</td>
<td>20/20</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Molin</td>
<td>Denzir CAD Zirconia</td>
<td>De Trey Zinc Phosphate, Panavia F</td>
<td>60</td>
<td>19/19</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Sorrentino</td>
<td>Procera Zirconia</td>
<td>3M™ RelyX™ Unicem Self-Adhesive Resin Cement</td>
<td>60</td>
<td>48/48</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Schmitt</td>
<td>3M™ Lava™ Zirconia Restorative</td>
<td>3M™ Ketac™ Cem Glass Ionomer Luting Cement</td>
<td>60</td>
<td>25/20</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Raigrodski</td>
<td>3M™ Lava™ Zirconia Restorative</td>
<td>3M™ RelyX™ Luting Plus Resin Modified Glass Ionomer Cement</td>
<td>60</td>
<td>20/18</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Burke</td>
<td>3M™ Lava™ Zirconia Restorative</td>
<td>3M™ RelyX™ Unicem Aplicap™/Maxicap™, or Clicker™ Cement</td>
<td>60</td>
<td>41/33</td>
<td>No secondary caries observed</td>
</tr>
<tr>
<td>Rinke</td>
<td>Cercon Zirconia</td>
<td>Harvard Zinc Phosphate</td>
<td>84</td>
<td>99/80</td>
<td>7%</td>
</tr>
<tr>
<td>Sola-Ruiz</td>
<td>3M™ Lava™ Zirconia Restorative</td>
<td>Multilink</td>
<td>84</td>
<td>27/27</td>
<td>7%</td>
</tr>
</tbody>
</table>
References:

Dr. Carrera received her DDS and specialty in prosthodontics from University of Talca, Chile in 2003 and 2008, respectively. Upon completing her dental training, she was hired as an adjunct professor at the University of Talca, Chile and later promoted to assistant professor. From 2003 to 2011 she coordinated and instructed several courses including Dental Pre-Clinic, Dental Materials, Restorative Fundamentals and Cariology, among others. During this time, she also maintained a local clinical dental practice. In 2011, she joined the PhD program in Oral Biology at the University of Minnesota. Her research focused on interactions between oral biofilms and dental composite restorations. Dr. Carrera received her PhD from the University of Minnesota in May 2016. She currently works as a research specialist in 3M Oral Care Solutions Division.

Geoffrey Morris, PE has more than 30 years experience in product development with a combined 10 in the oral care industry (3M Dental Products Division and 3M Unitek). His time in the 3M Oral Care Division focused on the development of direct restoratives materials during which he gained a deep knowledge and understanding of clinical research methodologies. He holds a Bachelor’s degree in Ceramic Engineering from the Georgia Institute of Technology and a Master of Science degree in Ceramic Engineering from the University of Illinois in Urbana-Champaign, USA. In 2015, Geoffrey Morris was inducted into Georgia Tech’s Academy of Distinguished Engineering Alumni. He is licensed to practice engineering and is currently registered in the State of Minnesota.

3M.com/Dental