Bereich Hochspannungsprüftechnik

Institut für Elektroenergiesysteme und Hochspannungstechnik

Universität Fridericiana (TH) Karlsruhe 76128 Karlsruhe - Kaiserstraße 12 Telefon (0721) 608 2520 Telefax (0721) 69 52 24

Test Report Nº 2009-125/2

Type Test of a 145 kV Termination Type TS 145-II

Client: 3 M Deutschland GmbH Carl-Schurz-Str.1

41453 Neuss

Reporter: Dr.-Ing. R. Badent Dr.-Ing. B. Hoferer

This report includes 17 numbered pages and is only valid with the original signature. Copying of extracts is subject to the written authorization of the test laboratory. The test results concern exclusively the tested objects.

1 Purpose of Test

One 145 kV termination type TS 145-II was subjected to a type test according to IEC 60840 04/2004, " type test on accessories".

2 Miscellaneous Data

Test object:	1 cold shrink outdoor termination with composite insulator $U_m = 145 \text{ kV}$, Type TS 145-II, Figure 2.1 Type of the cable: single core XLPE cable with copper con- ductor 1x400RMV 76/132/145 kV, Figure 2.2 Cable length between accessories: 6 m		
Manufacturer:	3 M China Ltd Tian Lin Road Shanghai 2002 P.R.C.	233	
Place of test:	Institute of E Technology – Kaiserstraße 1	Electric Energy Systems and High-Voltage - University of Karlsruhe, 2 – 76128 Karlsruhe	
Testing dates:	Delivery: Mounting: Test date:	07.12.2009 07.12 16.12.2009 14.01 08.02.2010	
Atmospheric			
conditions:	Temperature: Air pressure: rel. humidity:	19°C - 23°C 980 - 1020 mbar 35% - 50%	
Representatives	<i>Clients represe</i> DiplIng. J. We <i>Representative</i> DrIng. R. Bad	entative eichold es responsible for the tests lent ; DrIng. B. Hoferer; Mr. O. Müller	

Figure 2.1: Termination type TS 145-II

Rated voltage U ₀ /U (U _m): Construction: Conductors:	Identification o 76/132 (145) I-core AI Stranded	of Test (kV	Prüfg vorgeleg Unterschrift de 3-core Cu Cu Solid	egenstand entspricht der ten technischen Zeichnung Zhang s Herstellers Unterschrift des Prüfers
	Cross-section	n:	400 mm²	
Insulation:	XLPE	🗌 PE		EPR
Insulation screen:	🛛 Bonded	🗌 Str	rippable	Graphite
Metallic screen:	🛛 Wires	🗌 Ta	ре	Extruded
	Cross-section	n:	205 mm²	
Armour:	U Wire		🗌 Таре	
Metallic sheath/ Oversheath:	🛛 Lead	🗌 AI	⊠ PE	Laminated
	Conductive Layer	r		
Diameters:	Conductor Insulation Insulation screen Oversheath	23,6 54,8 56,9 75,0	mm mm mm	
Cable marking:				

Figure 2.2: Cable data sheet

- **Tests:** Test volume, chronological order and requirements conform to IEC 60840 04/2004 type test on accessories.
 - Pos. 1 Check on Insulation Thickness
 - Pos. 2 Partial Discharge Test $\hat{u} / \sqrt{2} = 1,75 U_0 = 133 \text{ kV}$ 10s thereafter ; $\hat{u} / \sqrt{2} = 1,5 U_0 = 114 \text{ kV}$ no detectable discharge
 - Pos. 3 Heating cycle voltage test Load cycle: 24 h 8h loading up to 95°C - 100 °C conductor temperature with at least 2h at 95°C-100°C 16h cooling Test voltage: $\hat{u} / \sqrt{2} = 2,0 U_0 = 152 \text{ kV}$ Number of cycles: 20
 - Pos. 4 Partial Discharge Test $\hat{u} / \sqrt{2} = 1,75 U_0 = 133 \text{ kV}$ 10s thereafter ; $\hat{u} / \sqrt{2} = 1,5 U_0 = 114 \text{ kV}$ no detectable discharge
 - Pos. 5 Partial Discharge Test at elevated temperature 8h loading up to 95°C - 100 °C conductor temperature with at least 2h at 95°C-100°C $\hat{u} / \sqrt{2} = 1,75 U_0 = 133 \text{ kV}$ 10s thereafter ; $\hat{u} / \sqrt{2} = 1,5 U_0 = 114 \text{ kV}$ no detectable discharge
 - Pos. 6 Lightning impulse voltage test at elevated temperature $T = 95^{\circ}C-100^{\circ}C$, at least 2h, $\hat{u} = 650 \text{ kV}$, 10 impulses each polarity
 - Pos. 7 AC-voltage withstand test during cooling period $\hat{u} / \sqrt{2} = 2.5 U_0 = 190 \text{ kV}, t = 15 \text{ min}$
 - Pos. 8 Accessory examination

3 Mounting

The cable preparation, assembling and mounting of the cable system was accomplished by technicians of 3 M Deutschland GmbH. The length of free cable between accessories was 6 m.

4 Test Setup

4.1 Check on Insulation Thickness

The insulation thickness was measured as described in IEC 60811-1-1, chapter 8.1. For measuring the insulation thickness a profile projector with a magnification of 10 was used which allowed a reading of 0.001 mm.

4.2 AC Voltage Withstand Test

The test voltage was generated by a 360-kVA transformer. The voltage was measured with a capacitive divider (C_H = 351 pF; ratio = 10.000:1) and a peak voltmeter reading $\hat{u} / \sqrt{2}$. The primary side of the AC-transformer was connected to a motor-generator set consisting of a variable frequency DC motor and a synchronous generator with variable excitation. The generator delivers voltages from 0 ... 500 V with currents up to 1000 A.

Figure 4.2:	Test-setup for AC-voltage	withstand test and PD measurement
	AC-transformer:	500V/300kV; S _N = 360 kVA
	Voltage measurement:	C _H = 351 pF; ratio 10.000:1
		uncertainty 3 %
	PD measurement:	C _C = 1000 pF; U _N = 800 kV _{rms}
		uncertainty 5 %

4.3 Partial-Discharge Test

The PD-measurement was performed with an analog bridge according to *Kreuger*, Figure 4.3. External PDs producing common mode signals at the detector are rejected by the differential amplifier. Internal PDs represent differential mode signals and are amplified. The background noise level at 114 kV_{rms} was 2.0 pC.

For balancing the bridge a calibrating impulse with $q_A = 10.000 \text{ pC}$ is applied between the terminals A (high-voltage) and C (ground) and the amplifier output is minimized. A pulse between the terminals A and C corresponds to an external PD. For the calibration a PD pulse, $q_A = 5 \text{ pC}$, is applied between A and B. Subsequently, the amplifier output of the PD measuring unit is adapted to the applied pulse.

4.4 Cyclic Current Loading

According to IEC 60840 the test objects must be heated by a current which provides the permitted service temperature of the tested cable plus 5 K - 10 K, that means 95° C - 100°C, for XLPE-cable. The required heating current I was determined via a dummy cable. A 6 m sample of the cable used for the test, was provided with a 1 mm diameter drilling hole down to the center conductor. The

temperature was measured with thermocouples NiCr-Ni. Two other thermocouples were installed on the conductor of the reference cable 0.5 m away from the middle and 1.0 m away from the middle. The difference between the three readings was less than 1°C. Furthermore two additional thermocouples NiCr-Ni were placed on the outer sheath of the cable, one on the dummy and one on the test loop. The maximum heating current was I = 1350 A, 8h. Current inception was accomplished by a transformer (U₁ = 400 V; U₂ = 20 V) which used the cable as secondary winding. The current was regulated by a control unit and measured by a current transformer, 3000:1, and a digital multimeter. The measurement uncertainty was 1%.

4.5 Lightning Impulse Voltage Test

For lightning impulse testing of the cable system 7 stages of a Marx generator (Haefely) with a maximum cumulative charging voltage of U = 1400 kV and a maximum impulse energy of E_{max} = 70 kWs were used. The crest value of the impulse voltage was measured by a damped capacitive divider and a subsequent impulse peak voltmeter (Haefely). The time to crest and the time to half value were evaluated from the oscillographs.

Figure 4.5.1: Scheme of switching impulse voltage test circuit C_{H} : 1200 pF ; $R_{H} = 70 \Omega$; ratio: 3215; IPV: impulse-peak-voltmeter (Haefely), measurement uncertainty 3% Oscilloscope: Tektronix TDS 3044 B– measurement uncertainty 2%

The waveform parameters were determined at reduced charging voltage. Figure 4.5.2 shows the front time, Figure 4.5.3 the time to half value for positive polarity each. Figure 4.5.4 shows the front time, Figure 4.5.5 the time to half value for negative polarity each.

Figure 4.5.2: Front time, positive polarity horiz.: 1 µs/Div; vert.: 1V/Div; probe 10:1; ratio 3215:1

Figure 4.5.3: Time to half value, positive polarity horiz.: 10 μs/Div; vert.: 1V/Div; probe 10:1; ratio 3215:1

Figure 4.5.4: Front time, negative polarity horiz.: 1 µs/Div; vert.: 1V/Div; probe 10:1; ratio 3215:1

Figure 4.5.5: Time to half value, negative polarity horiz.: 10 μs/Div; vert.: 1V/Div; probe 10:1; ratio 3215:1

5 Results

5.1 Check on Insulation Thickness

The test was carried out as described in 4.

Test date:	14.01.2010
Nominal value:	15.0 mm
Measured Values:	15.00 mm
	14.71 mm
	15.15 mm
	14.65 mm
	15.27 mm
	15.45 mm
Average Value:	15.04 mm
Result:	The average value exceeds the nominal
	value by 0.26%, so no correction was necessary

5.2 PD-Test

The test was carried out as described in 4.

Test date:	14.01.2010
Calibration pulse:	q _{cal} = 5 pC
Background noise level:	2.0 pC
Test voltage:	$\hat{u} / \sqrt{2} = 133 \text{ kV}; t = 10 \text{ s, thereafter}$
	$\hat{u} / \sqrt{2} = 114 \text{ kV}$; with pd reading
PD:	no detectable discharges

The test was passed successfully

5.3 Heating cycle voltage test

The test was carried out as described in 4.

Test date:15.01. - 04.02.2010Test voltage: $\hat{u} / \sqrt{2} = 152 \text{ kV}$ Heating current: I = 1200 . . .1350 A regulated, 8hI = 0A, 16 hCycle:8 h heating; 16 h coolingNumber of cycles:20

Neither breakdown nor flashover occurred.

The test was passed successfully

5.4 PD-Test

The test was carried out as described in 4.

Test date:	08.02.2010
Calibration pulse:	q _{cal} = 5 pC
Background noise level:	1.5 pC
Test voltage:	$\hat{u} / \sqrt{2} = 133 \text{ kV}; t = 10 \text{ s, thereafter}$
	$\hat{u} / \sqrt{2} = 114 \text{ kV}$; with pd reading
PD:	no detectable discharges

The test was passed successfully

5.5 PD-Test at elevated temperature

The test was carried out as described in 4.

Test date:	08.02.2010
Calibration pulse:	$q_{cal} = 5 pC$
Background noise lev	el: 1.5 pC
Heating current:	= 12001350 A regulated, 8 h
Temperature:	T = 96.1°C
Test voltage:	$\hat{u} / \sqrt{2} = 133 \text{ kV}; \text{ t} = 10 \text{ s}, \text{ thereafter}$
	$\hat{u} / \sqrt{2} = 114 \text{ kV}$; with pd reading
PD:	no detectable discharges

The test was passed successfully

5.6 Lightning Impulse Voltage Withstand Test at elevated temperature

This test was carried out as described in 4.

Test date:	08.02.2010
Test voltage:	$\hat{u} = 650 \text{ kV}$
Heating current:	I = 12001350 A regulated, 8 h
Temperature:	T = 96.3°C
Impulse:	1-5μs / 40-60 μs
Number of tests:	10 positive polarity, 10 negative polarity

Neither flashover nor breakdown occurred at the test objects during all lightning impulse voltage tests.

The test was passed successfully

number	charging voltage / kV	û / kV	Figure	remark
1	30,0	200		front time,
2	30,0	200		time to half value
3	48,8	327		50%
4	67,9	456		70%
5	87,1	584		90%
6	96,9	650	5.6.1	1. 100%
7	96,9	650	5.6.1	2. 100%
8	96,9	650	5.6.1	3. 100%
9	96,9	649	5.6.1	4. 100%
10	96,9	650	5.6.1	5. 100%
11	96,9	650	5.6.2	6. 100%
12	96,9	648	5.6.2	7. 100%
13	96,9	651	5.6.2	8. 100%
14	96,9	650	5.6.2	9. 100%
15	96,9	649	5.6.2	10. 100%

Table 5.6.1 shows the test results with positive polarity, table 5.6.2 with negative polarity.

Table 5.6.1: Lightning impulse voltage withstand test, positive polarity

number	charging voltage / kV	û / kV	Figure	remark
1	- 30,0	- 198		front time,
2	- 30,0	- 198		time to half value
3	- 48,8	- 323		50%
4	- 67,9	- 455		70%
5	- 96,9	- 584		90%
6	- 96,9	- 650	5.6.3	1. 100%
7	- 96,9	- 649	5.6.3	2. 100%
8	- 96,9	- 652	5.6.3	3. 100%
9	- 96,9	- 652	5.6.3	4. 100%
10	- 96,9	- 649	5.6.3	5. 100%
11	- 96,9	- 649	5.6.4	6. 100%
12	- 96,9	- 650	5.6.4	7. 100%
13	- 96,9	- 650	5.6.4	8. 100%
14	- 96,9	- 650	5.6.4	9. 100%
15	- 96,9	- 650	5.6.4	10. 100%

Table 5.6.2: Lightning impulse voltage withstand test, negative polarity

Figure 5.6.1: 100%-stress 1 - 5, positive polarity Hor.: 10μ s/Div; Vert.: 5V/Div; probe 10:1; \ddot{u} = 3215

Figure 5.6.2: 100%-stress 6 - 10, positive polarity Hor.: 10μs/Div; Vert.: 5V/Div; probe 10:1;ü = 3215

Figure 5.6.3: 100%-stress 1 - 5, negative polarity Hor.: 10μ s/Div; Vert.: 5V/Div; probe 10:1; \ddot{u} = 3215

Figure 5.6.4: 100%-stress 6 - 10, negative polarity Hor.: 10μs/Div; Vert.: 5V/Div; probe 10:1; ü = 3215

5.7 AC Voltage Withstand Test during cooling period

The test was carried out as described in 4.

Test date:	08.02.2010
Temperature:	$T = 45.0^{\circ}C$
Test voltage:	$\hat{u} / \sqrt{2} = 190 \text{ kV}; t = 15 \text{ min}$

Neither breakdown nor flashover occurred.

The test was passed successfully.

5.8 Accessory Examination

On completion of the electrical tests the accessory was examined. There was no evidence of electrical activity.

The test was passed successfully.

6 Conclusion

The termination type TS 145-II $U_m = 145$ kV, manufacturer 3M Deutschland GmbH, passed all tests described in Chapter 2 successfully. The test object fulfilled the requirements according IEC 60840 04/2004, "type test on accessories".

Karlsruhe, 13.08.2010

Dr.-Ing. R. Badent Head of Department "High Voltage Dielectric Testing"

S. Holere

Dr.-Ing. B. Hoferer Vice-Head of Department "High Voltage Dielectric Testing"