

#142 - Reuse of Organic Vapor Chemical Cartridges

Introduction

Traditionally, gas and vapor cartridges and canisters were often changed when the user noted taste, smell or irritation from the contaminant. However, some contaminants don't have good warning properties, and the ability to smell odors varies greatly between individuals. Therefore, change schedules are required for gas/vapor cartridges and canisters under local regulations such as US OSHA 29 CFR 1910.134 and CSA Z94.4.

Change schedules are often based on service life measurements or estimates. To best use the service life information, it is necessary to understand how chemical cartridges work. It is especially important when organic vapor cartridges are used against volatile chemicals during more than one work shift. These chemicals may desorb from the carbon when not in use, which could lead to early breakthrough and possible overexposure when the cartridge is reused.

Gas & Vapor Filtration

Chemical cartridges are used on respirators to help remove and lower worker exposures to harmful gases and vapors in the workplace. Chemical cartridges are used on respirators to help remove and lower worker exposures to harmful gases and vapors in the workplace. Typically, this sorbent is activated carbon from coconut shells. The coconut shell carbon is 'activated' by heating to 800-900°C with heat or steam, which results in a porous internal structure (honeycomb-like). The internal surface area of activated carbon averages 10,000 square feet per gram. This large surface area makes activated carbon ideal for removal of organic vapors by adsorption. Adsorption is the adherence of gas or vapor molecules to the surface of the activated carbon. The attractive force between the activated carbon and the chemical molecule is a relatively small, weak physical force. Adsorption works best for organic vapors with a boiling point greater than 65°C.

To make cartridges more effective for filtering gases, sorbents can be impregnated with chemical reagents. Impregnated activated carbon removes specific gas and vapor molecules by chemisorption. Chemisorption is the formation of bonds between molecules of the impregnant and the chemical contaminant. These bonds are much stronger than the attractive forces of physical adsorption. The binding is usually irreversible.

Table 1 shows the types of chemical cartridges and the mechanism used for removal of the gas or vapor.

Table 1: Table 1. Chemical Cartridge Types and Removal Mechanisms

Chemical Cartridge Type	Removal Mechanism	Examples of Impregnant
Organic Vapors	Adsorption	N.A.
Ammonia/Methylamine	Chemisorption	Nickel chloride, Cobalt salts, copper salts, Acids
Acid Gases	Chemisorption	Carbonate salts, Phosphate salts, Potassium hydroxide, copper oxide
Formaldehyde	Chemisorption	Copper oxide + metal sulfates, Salts of sulfamic acids
Mercury Vapor	Chemisorption	lodine, Sulfur
Hydrogen Fluoride	Chemisorption	Carbonate salts, Phosphate salts, Potassium hydroxide, copper oxide

Desorption of Organic Vapors

Generally, the more volatile the organic vapor, the less strongly adsorbed, or the more likely it will undergo desorption. Desorption is the process of an adsorbed material "letting go" from the activated carbon. It can occur naturally during periods of nonuse or if a less volatile organic vapor displaces a more volatile organic vapor.

A boiling point of less than 65°C is used as a guideline for identifying volatile organic vapors. However, the boiling point of 65°C is not a fine line between organic vapors that desorb and those that do not. Organic vapors with higher boiling points can still desorb; it just may take longer for it to occur. ²

Laboratory studies have also shown that a less volatile organic vapor can displace a more volatile organic vapor.³ This may result in a breakthrough concentration that exceeds the concentration in the air. While this study was done with concurrent exposure to organic vapor mixtures, the same effect is very likely to occur from sequential exposures, e.g. workers who move between tasks with different exposures.

In contrast, desorption typically should not be a problem for cartridges that rely on chemisorption.

Migration of Organic Vapors

Desorption during storage or nonuse times can result in chemical migration. Migration is the movement of a previously adsorbed chemical through the chemical cartridge, even without air movement. During periods of nonuse, organic vapors may desorb and redistribute from the areas of high concentration to areas of lower concentration, i.e., the back of the cartridge. When a worker reuses an organic vapor respirator, they may breathe the desorbed organic vapor when they first put it on and potentially for some time afterwards.⁴

Variables that appear to impact migration include²:

- Volatility the more volatile the organic vapors, the greater the concern for migration. (For nonvolatile organic vapors, 3M studies indicate migration is minimal.)
- Water vapor coadsorption use in atmospheres with high relative humidity (>50%) can increase the migration effect.
- Amount of material adsorbed onto the cartridge in the first use.
- Storage time.
- Vapor type.

Change-out Schedule Recommendations

There have been various recommendations published regarding the potential reuse of organic vapor cartridges. The ANSI Z88.2 standard recommends changing cartridges daily unless desorption studies suggest otherwise. OSHA states in its compliance directive that cartridges exposed to organic vapors with boiling points less than 65°C should be changed after every work shift,

unless the employer has objective data (desorption studies) to the contrary. Wood and Snyder use a mathematical model to predict migration and the potential reuse of organic vapor cartridges.

A more practical solution for reuse of organic vapor cartridges may be a "running clock". In other words, the estimated service life starts when the cartridge is first used and continues whether the cartridge is being used or stored. For example, if the estimated service life is 40 hours, then the organic vapor cartridge may be used for 8 hours, stored 16 hours and used for 8 hours (total time 30 hours) before being discarded. The effective cartridge change schedule would be every 2 days, except when used prior to a weekend, holiday, etc..

3M™ Service Life Software

The 3M™ Service Life Software uses an earlier method developed by Wood for determining service life for organic vapor cartridges by modeling the adsorption capacity and rate of adsorption of organic vapors from organic liquids. The service life estimate is the continuous time cartridges would last until a breakthrough point is reached. In other words, a service life estimate of 16 hours means it would last 16 hours of continuous use. It does not mean necessarily that it will last two 8-hour shifts when stored overnight.

For organic vapors with a boiling point less than 65°C, it is recommended the organic vapor cartridge never be used longer than one shift even if the estimated service life is greater than 8 hours and the cartridge is used for only a short time during the shift.

Conclusion

Organic vapors can desorb and migrate through cartridges during storage, or if displaced by other less volatile organic vapors. This is mainly a concern for volatile organic vapors. Organic vapor cartridges should not be used for more than one shift without considering the volatility of the organic vapor(s), estimated service life, cartridge use/nonuse patterns, and desorption data (if available).

References

- 1. Balieu, E. Respirator Filters in protection Against Low-Boiling Compounds. J. International Soc. For Respiratory Protection 1:125-138. 1983.
- 2. Wood, G. and R. Kissane. Reusability of Organic Vapor Air-Purifying Cartridges. Los Alamos National Laboratory, 1998.
- 3. Wood, G. and R. Kissane. Reusability of Organic Vapor Air-Purifying Cartridges. Los Alamos National Laboratory. 1998.
- 4. Moyer, E. S. Review of Influential Factors Affecting the Performance of Organic Vapor Air-Purifying Respirator Cartridges. Am. Ind. Hyg. Assoc. J. 44(1):46-51. 1983.
- 5. American National Standards Institute. American National Standard for Respiratory Protection (ANSI Z88.2-1992). New York: American National Standards Institute, Inc., 1992.
- 6. US DOL/OSHA. Inspection Procedures for the Respiratory Protection Standard (CPL 2.120). Washington, D. C.: US Department of Labor/Occupational Safety and Health Administration, September 18, 1998.
- 7. Wood, G. O. and J. L. Snyder, Estimating Reusability of Organic Air-Purifying Respirator Cartridges. J. Occ. Env. Hyg.. 8(10):609-617. 2011.
- 8. Wood, G. O. Estimating Service Lives of Organic Vapor Cartridges. Am. Ind. Hyg. Assoc. J. 55(1):11-15. 1994.

3M Center, Building 235-2W-70 St. Paul, MN 55144-1000

3M PSD products are occupational use only.

In United States of America

Technical Service: 1-800-243-4630

Customer Service: 1-800-328-1667

3M.com/workersafety In Canada

Technical Service: 1-800-267-4414 Customer Service: 1-800-41 0-6880 3M.ca/Safety 3M is a trademark of 3M. Used under license in Canada. © 2025, 3M. All rights reserved. Please recycle.

