Degassing Boiler Feed Water in China with 3M™ Liqui-Cel™ Membrane Contactors

Introduction
ShenLan Environment Inc. located in Shanghai, China uses 3M™ Liqui-Cel™ Membrane Contactors in their boiler feed water treatment systems. These systems realize lower operating costs with the added benefit of reducing the chemicals added to the boiler feed water.

Background
Proper treatment of boiler feed water is an important component of a boiler system. As steam is produced, dissolved solids become concentrated and deposited inside the boiler. This leads to poor heat transfer and reduced efficiency of the boiler. Dissolved gasses such as oxygen and carbon dioxide will react with the metal surfaces inside the boiler, promoting corrosion. Degassing is an important step for protecting the boiler.

Liqui-Cel membrane contactors offer many advantages over forced draft deaerators, vacuum towers, and chemical treatment programs for feed water treatment. Membrane contactors utilize microporous membranes to create 10X the surface area compared to mechanical technologies. Contactors are highly efficient and compact and can be used inline under pressure.

Chemical Treatment
Chemical treatment is widely used to control dissolved oxygen in a boiler. The cost of operating a chemical treatment program consists of chemical costs and blow down costs. Periodically, the water in the boiler must be flushed out to remove non-volatile compounds. They are flushed out of the boiler in a process called blow down. Chemical addition to the water can increase the frequency of blow down, which increases the operating cost of the boiler.

There are two components of blow down costs. Water and steam that is purged from the boiler during blow down is sent to drain. This water must be replenished by fresh makeup water and there is a cost associated with it. The second cost is heat or energy cost. The water blow down from the boiler is hot. It is replaced with cold water that must be reheated in order to produce steam.

Example Using Membrane Contactors
Membrane contactors can be used to remove the dissolved oxygen from water. By removing the dissolved oxygen, the volume of chemicals added to the boiler will be reduced. By reducing the chemicals added to the boiler, the frequency of blow down can be potentially reduced. The example on the following page (Figure 2) compares operating costs of two systems. One system is a chemical-only treatment system with a blow down rate of 10%.
The other system assumes that the oxygen content of the feed water is reduced to 0.5 ppm and that the blow down rate can be reduced to 5% due to the reduction of chemicals in the boiler.

The boiler specifications used in this example are for reference. These calculations can be modified in order to apply them to boilers with different operating conditions.

Membrane System Operating Cost

A 3M™ Liqui-Cel™ Membrane Contactor system can be used to produce feed water with low levels of dissolved oxygen. The operating cost of a membrane degassing system is comprised of electricity and seal water for the vacuum pump.

When comparing this to the chemical treatment system, annual savings reach $2,170. When the savings associated with blow down is included, the operating cost savings can be more than $8,500 per year. A typical membrane system designed to degas the water outlined in this example can have a payback in less than two years.

The details and equations used to calculate the operating savings can be found in the full technical paper on this subject. This paper is available at 3M.com/Liqui-Cel in the technical resources section.

Summary

Dissolved oxygen control in boiler feed water is an important process that protects the boiler from corrosion. Chemical treatment is often used to control the dissolved oxygen. Liqui-Cel membrane Contactors can be used to replace or supplement the chemical treatment program. The Contactors can minimize the volume of chemicals added to the feed water and offer savings to the end user by reducing chemical as well as energy costs.

For additional information, please contact your 3M representative or visit 3M.com/Liqui-Cel.

Technical Information:

The technical information, recommendations and other statements contained in this document are based upon tests or experience that 3M believes are reliable, but the accuracy or completeness of such information is not guaranteed.

Product Use:

Many factors beyond 3M’s control and uniquely within user’s knowledge and control can affect the use and performance of a 3M product in a particular application. Given the variety of factors that can affect the use and performance of a 3M product, user is solely responsible for evaluating the 3M product and determining whether it is fit for a particular purpose and suitable for user’s method of application.

Warranty, Limited Remedy, and Disclaimer:

Unless an additional warranty is specifically stated on the applicable 3M product packaging or product literature, 3M warrants that each 3M product meets the applicable 3M product specification at the time 3M ships the product. 3M MAKES NO OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY IMPLIED WARRANTY OR CONDITION ARISING OUT OF A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE. If the 3M product does not conform to this warranty, then the sole and exclusive remedy is, at 3M’s option, replacement of the 3M product or refund of the purchase price.

Limitation of Liability:

Except where prohibited by law, 3M will not be liable for any loss or damage arising from the 3M product, whether direct, indirect, special, incidental or consequential, regardless of the legal theory asserted, including warranty, contract, negligence or strict liability.

3M and Liqui-Cel are trademarks of 3M Company. All other trademarks are the property of their respective owners. © 2017 3M Company. All rights reserved.