3M™ Antistatic Additives
Ionic Liquids and Solids
February 2016
3M™ Antistatic Additives Overview

• Our Mission
• Fluorochemicals and Anions
• Products
• Performance
• Highlights
3M™ Antistatic Additives

Our Mission

To solve the toughest antistatic control problems using 3M’s unique fluorochemical synthesis and manufacturing capability.

Safety
- Reduce electrostatic discharge events
- Spark control

Cleanliness
- Reduce particles
- Reduce dust

Product Protection

Process Control
- Increase assembling efficiency
- Improve positioning process
- Increase control of toner liquid
- Increase easiness of peeling
Fluorochemical Capabilities

- 3M is a world leader in fluorine chemistry and electrochemical fluorination
- 50+ years manufacturing experience
- High purity fluorinated electrolyte salts and fluids manufacturing
 - Cordova, IL and Cottage Grove, MN (USA)
 - Antwerp, Belgium
- Extensive capabilities in fluorinated anion synthesis
 - Leverages existing ECF capabilities
- 15+ years experience making fluorinated ionic liquids and antistatic additives (lab and factory scale)
- Research labs in USA (St. Paul), Japan, Korea and China
Fluorinated Anions Derived from ECF

\[\text{R}_f\text{SO}_2\text{F} \rightarrow \text{NH}_3 \rightarrow \text{SO}_2\text{R}_f \text{ imides} \]

\[\rightarrow \text{H}_2\text{O} \rightarrow \text{OSO}_2\text{R}_f \text{ sulfonates} \]

\[\rightarrow \text{CH}_3\text{MgCl} \rightarrow \text{SO}_2\text{R}_f \text{ methides} \]

Highly delocalized negative charge
3M™ Antistatic Additives
General Properties

- High ionic conductivity
 - Good electrolytes and antistats
- Lipophilic
 - Good solubility in organic solvents, monomers and polymers
 - Good optical clarity and low haze
 - Low affinity for water
- Low water content
 - Compatible with water sensitive monomers (e.g. urethanes)
 - Minimize bubble formation during high temperature processing

- Low to no vapor pressure
 - Non-flammable
 - No contribution to outgassing
 - No contribution to VOCs
- Stability
 - Thermal → Can process at high temperatures
 - Chemical → Improved pot life; little to no affect on polymer
 - Hydrolytic → No evidence of hydrolysis or HF formation in presence of water
 - Redox
 - Stable to melt processing
3M™ Antistatic Additives
Competitive Advantage

Adhesive
- Optical Clear
- Bonding Force
- Hydrophobic
- Thermal stability
- Independent to humidity

Protection / Optical Film
- No Migration
- Graft into Polymer
- No Leaching
- Static Decay Time

Coating
- Hydrophobic
- Thermal Stability
- Graft into Polymer

Packaging
- Optical Clear
- Hydrophobic
- Thermal Stability

Transportation Carrier Tape/Tray
- Graft in to Polymer
- Easier to Compound
- Thermal Stability
- No Leaching

Urethane Roller
- Static Decay Time
- Pot Life
- Durable
- Thermal Stability

© 3M 2016. All Rights Reserved.
3M™ Antistatic Additives
Product Portfolio

Commercial Ionic Liquid Antistats

3M™ Ionic Liquid Antistat FC-4400
- (n-Bu)₃MeN⁺·N(SO₂CF₃)₂
- Salt of quaternary ammonium cation and fluorinated imide anion

3M™ Ionic Liquid Antistat FC-5000
- US Only
- R₄N⁺·N(SO₂CF₃)₂
- Salt of quaternary ammonium cation and fluorinated imide anion
- Single primary alcohol group on quaternary ammonium improves polymer compatibility and can be grafted into select polymer networks (e.g. urethanes, epoxies)

3M™ Ionic Liquid Antistat FC-5000i*
- OUS version of 3M™ Ionic Liquid Antistat FC-5000

Commercial Salts

3M™ Battery Electrolyte HQ-115
- Li⁺·N(SO₂CF₃)₂
- Salt of lithium cation and fluorinated imide anion
- Available in three product grades
 - 3M™ Battery Electrolyte HQ-115 (standard grade): <5000 ppm water
 - 3M™ Battery Electrolyte HQ-115U: <200 ppm water
 - 3M™ Ionic Liquid Precursor HQ-115IL: 20% water solution

Experimental Materials
3M can synthesize a variety of materials using toolkit of fluorinated anions and organic cations

* Referred to as FC-5000 for rest of the presentation
3M™ Battery Electrolyte HQ-115 (Antistatic Salt)

Properties and Values

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>White powder</td>
</tr>
<tr>
<td>Melting Point</td>
<td>236°C</td>
</tr>
<tr>
<td>Thermal Decomposition Trigger Temperature</td>
<td>~330°C</td>
</tr>
</tbody>
</table>

Advantages

- Effective in a variety of polymer hosts
 - Adhesives (e.g. acrylate based PSA)
 - Coatings (e.g. UV cured acrylates)
 - Urethanes

- Solid
- 100% active material – no solvent
- Hydrophilic; works in aqueous formulations
- Precursor for manufacture of ionic liquids
 - Available as 3M™ Ionic Liquid Precursor HQ-115IL: 80% concentrate in water
- Developed and used as Li battery electrolyte
3M™ Ionic Liquid Antistat FC-4400

Effective in a variety of polymer hosts
- Adhesives (e.g. acrylate based PSA)
- Coatings (e.g. UV cured acrylates)
- Urethanes
- Thermoplastic and thermoset polymers

Advantages
- Ionic liquid – no solids handling required
- 100% active material – no solvent
- Low reactivity to polymers at high temperatures
- Good cleanliness
 - Low metal and halogen ion levels
 - No outgassing or particle sloughing
- Hydrophobic – low H₂O content and solubility
- Stable performance over wide humidity range

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Clear, colorless liquid or white crystalline solid</td>
</tr>
<tr>
<td>Melting Point</td>
<td>27.5°C</td>
</tr>
<tr>
<td>Thermal Decomposition Trigger Temperature</td>
<td>~340°C</td>
</tr>
<tr>
<td>Density @ 25°C</td>
<td>1.3 g/mL</td>
</tr>
<tr>
<td>Viscosity @ 25°C</td>
<td>499 cps (supercooled)</td>
</tr>
<tr>
<td>pH (Typical)</td>
<td>5 (neutral)</td>
</tr>
</tbody>
</table>
3M™ Ionic Liquid Antistat FC-5000

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Clear, colorless liquid</td>
</tr>
<tr>
<td>Melting Point</td>
<td>< -50°C</td>
</tr>
<tr>
<td>Thermal Decomposition Trigger Temperature</td>
<td>~320°C</td>
</tr>
<tr>
<td>Density @ 25°C</td>
<td>1.3 g/mL</td>
</tr>
<tr>
<td>Viscosity @ 25°C</td>
<td>251 cps</td>
</tr>
<tr>
<td>pH (Typical)</td>
<td>5 (neutral)</td>
</tr>
</tbody>
</table>

Effective in a variety of polymer hosts
- Adhesives (e.g. acrylate based PSA)
- Coatings (e.g. UV cured acrylates)
- Urethanes
- Thermoplastic and thermoset polymers

Advantages
- Wide liquid range – no solids handling
- 100% active material – no solvent
- Single pendant alcohol group
 - Graft in to some polymer networks
 - Improved solubility in some polymers
- Good cleanliness
 - Low metal and halogen ion levels
 - No outgassing or particle sloughing
- Hydrophobic – low H₂O content and solubility
- Stable performance over wide humidity range
3M™ Antistatic Additives
Product Comparison

<table>
<thead>
<tr>
<th>Property</th>
<th>3M™ Battery Electrolyte</th>
<th>3M™ Ionic Liquid Antistat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HQ-115</td>
<td>FC-4400</td>
</tr>
<tr>
<td>General Description</td>
<td>Li salt of imide</td>
<td>(n-Bu)₃MeN⁺ salt of imide</td>
</tr>
<tr>
<td>Thermal Decomposition Trigger Temperature</td>
<td>330°C</td>
<td>340°C</td>
</tr>
<tr>
<td>Melting Point</td>
<td>236°C</td>
<td>27.5°C</td>
</tr>
<tr>
<td>Hydrophobic / Hydrophilic</td>
<td>Hydrophilic</td>
<td>Hydrophobic</td>
</tr>
<tr>
<td>Inertness</td>
<td>Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Metals / Halogen Ions</td>
<td>High Li</td>
<td>Low</td>
</tr>
<tr>
<td>Graft in to Polymer</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

* Polymer dependent

![Imide Structure](image)
3M™ Antistatic Additives
General Comments

- Typical effective loading levels
 - 1 to 5% by weight
- Performance is dependent on:
 - Polymer type
 - Polymer properties (e.g. molecular weight, T_g)
 - Preparation method
- Best place to test performance is on the customer’s line
- Can run small scale evaluation at 3M lab

- Antistatic additives processing
 - Extruded with polymer (hot melt)
 - Cast from polymer solution (solvent cast)
 - Dissolve in solvent free monomer solution
 - (100% solids thermal or photo cure)
- Extrusion processing
 - Injected mid barrel
 - Added at feed chute
 - Pre-mixed with resin pellets / powder
 - Masterbatch
3M™ Antistatic Additives
Performance Summary

<table>
<thead>
<tr>
<th>Polymer</th>
<th>3M™ Battery Electrolyte</th>
<th>3M™ Ionic Liquid Antistat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HQ-115</td>
<td>FC-4400</td>
</tr>
<tr>
<td>Urethanes</td>
<td>Yes</td>
<td>Yes (W)</td>
</tr>
<tr>
<td>Adhesives</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Coatings (e.g. acrylates)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Epoxies</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>PVDF</td>
<td>-</td>
<td>Yes (W)</td>
</tr>
<tr>
<td>PVC</td>
<td>-</td>
<td>Yes (W)</td>
</tr>
<tr>
<td>PET / PEN</td>
<td>-</td>
<td>Yes (N)</td>
</tr>
<tr>
<td>PETG</td>
<td>-</td>
<td>Yes (N)</td>
</tr>
<tr>
<td>PC</td>
<td>No</td>
<td>Yes (N)</td>
</tr>
<tr>
<td>Silicone (functional)</td>
<td>-</td>
<td>In some cases</td>
</tr>
<tr>
<td>PMMA / CAB / CAP</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

General results observed to date. Performance will depend on specific polymer and sample preparation. W – resistant to water washing. N – not resistant to water washing.
3M™ Antistatic Additives
Product Highlights

- Platform of products to meet customer requirements
- Excellent solubility in polar organic solvents and various polymer hosts
- Good optical clarity and low haze
- High ionic conductivity in various polymers
- Excellent thermal, chemical, hydrolytic and redox stability
- Low to no vapor pressure – no outgassing or flammability
- 100% active material – no solvents

- Cleanliness – low halogen and metal levels in 3M™ Ionic Liquid Antistats FC-4400 and FC-5000
- Graft-able – 3M™ Ionic Liquid Antistat FC-5000 can be reacted into certain polymer networks (e.g. urethanes, epoxies)
- Stable performance over wide humidity range for 3M™ Ionic Liquid Antistats FC-4400 and FC-5000
- Effective at low loading levels
 - Minimal impact on polymer physical properties
 - Cost effective
Important Notice

Regulatory: For regulatory information about these products, contact your 3M representative.

Technical Information: The technical information, recommendations and other statements contained in this document are based upon tests or experience that 3M believes are reliable, but the accuracy or completeness of such information is not guaranteed.

Product Use: Many factors beyond 3M’s control and uniquely within user’s knowledge and control can affect the use and performance of a 3M product in a particular application. Given the variety of factors that can affect the use and performance of a 3M product, user is solely responsible for evaluating the 3M product and determining whether it is fit for a particular purpose and suitable for user’s method of application.

Warranty, Limited Remedy, and Disclaimer: Unless an additional warranty is specifically stated on the applicable 3M product packaging or product literature, 3M warrants that each 3M product meets the applicable 3M product specification at the time 3M ships the product. 3M MAKES NO OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY IMPLIED WARRANTY OR CONDITION ARISING OUT OF A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE. If the 3M product does not conform to this warranty, then the sole and exclusive remedy is, at 3M’s option, replacement of the 3M product or refund of the purchase price.

Limitation of Liability: Except where prohibited by law, 3M will not be liable for any loss or damage arising from the 3M product, whether direct, indirect, special, incidental or consequential, regardless of the legal theory asserted, including warranty, contract, negligence or strict liability.

Electronics Materials Solutions Division
3M Center, Building 224-3N-11
St. Paul, MN 55144-1000
1-800-810-8513
www.3M.com

3M is a trademark of 3M Company.

Please recycle.

©3M 2016. All rights reserved.

2/2016
Thank you