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Abstract
Advances in both Behavioral Vision Science and Computational 
Vision are the basis for computational models of human 
visual attention that take as input an image or video and make 
predictions about where people will fixate in the first 3 to 5 
seconds of viewing.  Initial fixations play an important role in 
acquiring an understanding of a scene and/or content and serve 
as the gateway to further visual analysis.  3M Visual Attention 
Service (3M VAS) uses a computational model of visual 
attention to make predictions about where initial fixations will 
occur in an image.  Validation studies are presented in which 
eye-tracking results are compared to the predictions made by 
3M VAS on the same set of images.  Using signal detection 
Response-Operator-Characteristics (ROC) we found that the 
model was able to predict human fixations at around 85% of the 
theoretical limit (theoretical limit being eye-tracking).  If biases 
are removed from the eye-tracking data (e.g., the central bias 
which is a function of collecting data on computer monitors), the 
model performs at approximately 90% of the theoretical limit.



Performance Evaluation
Introduction
There has been a great deal of research in Vision Science and 
Computer Vision to develop theories of visual attention that 
are converted into mathematical equations and algorithms 
that make explicit predictions about where people will 
initially look when viewing complex scenes such as  
shopping malls, streets, magazine pages, web pages, 
advertising content, etc. 

3M Visual Attention Service is a software tool that takes 
as input an image or video and as output makes predictions 
about where people will initially look within that scene.  
The software is based on 30 years of research in academic 
institutions and recent research at 3M to better understand 
what people will initially notice.  The goal of this research 
is to develop a deep understanding of how visual attention 
is initially allocated in a complex scene—that is where will 
people look—and to translate that knowledge to a software 
tool that predicts where these initial fixations will occur. 

But how does the visual system make decisions on where 
to look? The human visual system takes in a large amount 
of visual information (that is, the entire visual field) at any 
given time. However, the human visual system expends the 
bulk of its resources processing only a small fraction of this 

information—typically where the viewer is fixated. Although 
the majority of the visual field is not being attended to, it 
serves as an important part of the visual experience.  The 
human visual system uses the information in the periphery to 
monitor regions that might be of interest to the viewer—the 
regions that attract visual attention.  If the early perceptual 
properties (color, motion, contrast etc.) are engaging, the 
human visual system will move its fixation to that location 
to gather more visual information.  Thus, when one initially 
enters a room, or initially turns a corner, or looks at a 
magazine page, the human visual system surveys the scene to 
become aware of what might be important within the scene.  
Based on prior research, during this initial “surveillance” 
period our visual system is attracted to low-level perceptual 
features such as color, luminance, edges, motion and other 
early visual processing elements. This initial surveying 
typically occurs in the first 3-5 seconds. During this survey 
period the visual system analyzes the visual representation 
projected on the retina and based on that information the 
eyes are drawn to particular regions of the scene based on 
the visual features (e.g., color, contrast, text faces, etc.).  
What people do after this initial 3-5 seconds will depend 
on Top-Down processing.  These secondary fixations that 
are primarily driven by Top-Down processing will use the 
information gathered during these initial fixations to decide 

Figure 1. Upper-Left: An illustration of the fixations for a single 
subject during a 3 second presentation of this image.   
Left-Center: The combined fixations for 20 different participants 
who viewed this image in an eye-tracking study.   
Right-Center: A Fixation Heat Map representing the variability 
of the participant’s looked at this image.   
Lower Right: The model’s Heat Map predictions for this image 
showing the regions that the model predicts people will look. 

Figure 1



where to look next based upon the individual’s task (e.g., “I 
need to find the exit” versus “I need to find an elevator”) 
and the relevancy of the items evaluated during these initial 
fixations (e.g., “I noticed an advertisement for a restaurant on 
the wall and I need to find someplace to eat tonight  
with my friends — gather more visual information on that 
digital sign.”).

One may wonder how gender, age, or experience might affect 
where people initially look.  Behavior research has shown that 
these human attributes have little effect on where people will 
initially look (assuming equivalent visual acuity and other 
visual processing capabilities).  However, once the visual 
system has completed the initial surveillance process (usually 
3-5 seconds), these other factors (e.g., top-down influences 
related to personal interest and task) will play a more 
significant role in where people will look.

Although where people will look within an image is fairly 
consistent, we still have to acknowledge that there is some 
variability between individuals as well as some variability in 
the consistency between individuals for a particular image. 
Figure 1 shows an illustration of a single subject’s fixation 
sequence, the combined sequences across individuals, a 
Fixation Map, and the VAS predictions for this image. Notice 
that there are some regions where most people look (e.g., on 
the crossing guard) while there are some regions where only a 
few fixations occur (e.g., base of the lamp post). The between-
observer fixation variability (the variability from one subject 
to another) poses a challenge to validating a computational 
model of human visual attention.   

Data & Methods
L3M VAS was validated using eye-tracking data.  Data 
used for this validation consisted of four different data sets, 

two of which were collected by academic research labs 
(MIT & York University) and the third and fourth sets were 
collected by 3M.  Each data set consisted of eye fixations data 
collected for relatively short periods of time (3-5 seconds) for 
a variety of images (indoor scenes, outdoor scenes, people, 
advertisements, etc.).  This provides a measurement as to 
where people will initially look at an image.  

All of the data were collected in a similar way: participants 
were seated in front of a computer monitor and images were 
presented one at a time for a given period of time.  In between 
each image there was either a short fixed inter-image pause or 
a wait period in which the subject pressed a button indicating 
that they were ready for the next image. Participants were 
instructed to “freely view “the images during that time (that 
is, they were not given any specific task to complete).  During 
the free viewing period, eye-tracking equipment measured 
and recorded where the participants looked at the image.  
Figure 1 provides an illustration of eye-tracking data for a 
single subject.  The blue circles indicate the location and 
the size of the circle indicates the dwell time for a particular 
subject. The red “+” in the upper-left illustration of Figure 1 
shows the combined location of all 20 participants who looked 
at this image in the 3M study.   

Validating 3M Data Collection Techniques

One of the goals of the current study is to show that the 
methods 3M uses to collect data match those of outside 
research institutions.  To do this, we collected eye-tracking 
data using the images from a previous study conducted at 
York University in which eye-tracking data from their lab is 
made publically available (http://www-sop.inria.fr/members/
Neil.Bruce/eyetrackingdata.zip).  The York University images 
consisted of 120 images of various indoor and outdoor



scenes. One of the purposes of collecting data on the York 
University images was to replicate their findings and to 
validate the methods and procedures used at 3M matched that 
the processes used by other vision scientists. Later we will 
compare the results on the York University images collected 
at 3M to those collected at York University.

 

In addition to collecting data on the York University images, 
we also collected data in the same study on a series of 
marketing materials.  The purpose of this study is to evaluate 
how well 3M VAS predicts the initial fixations for advertising 
and marketing materials.  These images consisted of print 
ads, packaging, outdoor billboards and shelving planograms 
and were mixed within the set of York images in a random 
fashion.  Figure 2 shows a sample of four images from  
this data set. 

Participants:  Three groups of participants were used in 
the current analysis from three different labs.  The York 
University lab used 20 participants and the MIT study used 
15 participants. Eye-tracking data collected at 3M used 20 
participants (13 Males and 7 Females) ranging in age from 23 
to 60 years old.  The participants were 3M employees who 
were not familiar with the purpose of the study.  All of the 
participants had normal or corrected to normal vision.

Upper-Theoretical Performance Limit

In order to fully evaluate the predictive power of a Visual 
Attention model one needs to account for the natural variation 
in eye-tracking data—the between-subject variability.  
Fundamentally, the upper-theoretical boundary for predicting 
eye-fixations is the ability of one visual system (one person 
or group of people) to predict the fixations of a second visual 
system (or group of people).  A model of human visual 
attention cannot outperform an actual visual system and this 
provides us with an upper-theoretical bound of performance.  
To measure the upper-theoretical performance boundary we 
used a split-data design technique.  Specifically, we used 
the fixation data from one half of the subjects to predict the 
second half of the subjects.  

To generate the predictions we used the fixation locations 
from one half of the subjects and convolved a Gaussian kernel 
at each location where there was a fixation.  The Gaussian 
kernel was approximately 1-degree of visual angle, which 
corresponded roughly with the measurement error in eye-
tracking equipment. The Upper-Right image in Figure 1 
illustrates the output generated by this convolution.  We then 
used the generated representation from this first group  
of participants to predict the fixations for the second  
group of participants.   

Figure 2. Four sample images from the York University 
image set.

Figure 3. An illustration of the 3M images used in the 
validation study.  



Response-Operator-Characteristic
LTo evaluate the predictive performance we calculated ROC 
values using a split-data method in which we calculated how 
well one-half of the subjects fixation data predicted the second 
half of subjects (randomly selected) for each image and then 
compared the predictive power of the 3M VAS predictions 
to that of using human data. To do this we generated two 
predictive maps for each image.  One predictive map was 
generated by taking one half of the subjects and generating a 
heat map representation from the subjects’ fixation locations.  
The second heat map was generated by using 3M VAS to 
analyze each image.

For both sets of predictions (human and 3M VAS) for each 
pixel there is a continuous value associated with the strength 
of the prediction for that pixel.  To generate an ROC value 
for each image we varied the threshold of how liberal of a 
prediction would be considered.  When the threshold is high, 
the model makes very few predictions as to where attention 
will be allocated, has only a few hits and has very few false 
alarms (see lower left corner of ROC curve in Figure 4).  
However, as the threshold decreases, the area in which the 
model is predicting becomes larger and the model correctly 
predicts more fixations. However, this increased region 
also increases the number of false alarms.  To evaluate the 
performance of information available in the Heat Map we 
used the ROC calculation described above.  

ROC takes into account multiple threshold levels and 
measures the number of Hits (correct predictions) and False 
Alarms (incorrect predictions; see Figure 4 for an illustration) 
for each threshold level.  After generating the Hits and 
False Alarm rates for multiple thresholds, a single metric 
is generated by calculating the area under the curve.  Thus, 
if the model perfectly predicts the data, the prediction will 
have a ROC value of 1.0. Figure 5 (next page) shows the 
distribution of ROC values for the different images for the 
Human-To-Human comparisons for the York University, 
MIT and 3M advertising data.  The York University data 
predicted itself with an average ROC value of 0.819. The 3M 
data predicted the York data with an average ROC value of 
0.812.  This insignificant difference indicates that the methods 
and procedures used at 3M closely match those used at York 
University.  The MIT data predicted itself with an average 
ROC value of 0.89 and the 3M advertising data predicted 
itself with an average ROC value of 0.93.  These values 
provide us with the upper-theoretical performance boundary 
by which we will compare 3M VAS performance. 

3M VAS Prediction Efficiency

The Human-to-Human analysis provides a valuable metric for 
evaluating the efficiency of 3M VAS.  Because the Human-
to-Human analysis provides a way to measure the Theoretical 
Limit of performance — the very best predictive

3M Subjects ROCFigure 4



performance one can expect if one were to run an eye-
tracking study—we can use this performance as our baseline 
by which to compare the predictions made by 3M VAS to 
provide a metric of performance relative to human eye-
tracking performance.  To do this we used the output of 3M 
VAS on the images in these various studies to predict the 
eye-fixations using the same ROC data analysis technique 
described above.  The distribution of ROC values are shown 
in Figure 6.  The ROC values for the 3M VAS predictions are 
0.74 for the York University images, 0.76 for the MIT images 
and 0.73 for the 3M advertising images.  

Fixation Biases in Eye-Tracking
Within the eye-tracking community it is well known that 
when collecting eye-tracking data on computer displays there 

are particular fixation biases that are not determined by the 
content that is on the computer screen.  One well known bias 
is known as the Center Bias or the Center Fixation Bias.  The 
cause of this bias is due to multiple factors.  One known factor 
is that fixating in the center of the screen provides the most 
information about the image (given the resolution fall-off in 
peripheral vision).  However, the center bias is due to the fact 
that people are looking at images on a computer screen.  3M 
VAS does not predict how people will look at these images on 
a computer screen but instead how people will look at these 
images in the real world .  Using a technique described in 
Zhang et al. (2008) we evaluated both the Human-to-Human 
performance and the 3M VAS performance removing the 
center bias and any other fixation biases that might have 
occurred in the data collection.

Figure 5. The distribution of ROC values for the York University Images using the split-data design technique, specifically, 
providing the upper theoretical performance limit for eye-tracking data. Upper-left is the distribution of values for the York 
University Data set (Mean ROC=0.819), the Upper-Right shows the distribution for the MIT data set (Mean ROC=0.89) and the 
Lower plot shows the distribution for the 3M advertising data set (Mean ROC=0.93).

Figure 6. An illustration of 3M VAS performance on predicting eye-movements for the York University images (Mean 
ROC=0.74), the MIT images (Mean ROC=0.76) and the 3M advertising images (Mean ROC=0.73).



Modified ROC
The modified ROC (mROC) calculates performance in much 
the same way as the standard ROC.  As a reminder, the 
standard ROC calculates the number of hits as a function of 
the number of false alarms (incorrect predictions) by varying 
the levels of threshold (threshold independent analysis).  The 
right side illustration in Figure 4 illustrates a sample curve.  
The mROC, by contrast, evaluates how well the predictions 
generated for a particular image (e.g., Image-1) predict the 
fixations for that image against the fixations for all of the 
other images. As with the standard ROC approach, the mROC 
calculates the percentage of hits for the target image (i.e., 
correctly predicting the fixations for the target image for a 
particular threshold) against the percentage of hits for the 
fixations for all other images in the study. 

It is well known that when collecting data on a computer 
there is a bias for fixating in the center of the screen (Tseng 
et al. 2009).  There are a number of reasons for this center 
bias, which were discussed and evaluated by Tseng et al. 
(2009), that we will not go into in this manuscript.  Removing 
this center bias from the analysis is important since the 
performance of the model will be reduced because the 
model predicts what people will see in a real environment 
(free viewing with no frame), not how perform in an eye-
tracking study on a computer.  It should be noted that one 
way to improve the model’s performance is to put an explicit 
center bias within the model’s predictions.  However, this 
improves the model’s performance for predicting fixations on 
a computer monitor but not necessarily in the real world.  

One way to think about the mROC calculation is that the 
mROC evaluates how well the model is able to predict 
the unique fixations for a target image relative to all other 
images.  More accurately, the more unique the correctly 
predicted fixation positions for a particular image, the more 
weight that is given to the score.  Therefore, if there are 
numerous fixations in the center of the computer screen and 
the model correctly predicts these fixations, these scores will 
be weighted less than a prediction made to fixations where, 
overall, there were very few fixations across all of the images.

Results
When taking out the bias, the upper-theoretical performance 
measure (Human-to-Human) for the York University data is 
0.71 and the 3M VAS performance is 0.66 with a Prediction 
Efficiency value of 93%.  The MIT data had an upper-
theoretical limit of 0.70 and the 3M VAS performance was 
0.66 with a prediction efficiency of 94%.  The 3M advertising 
data had an upper-theoretical limit of 0.76 and the 3M VAS 
performance was 0.65 with a prediction efficiency of 85%.

Summary & Conclusions
We presented a validation study of 3M VAS by comparing 
the saliency predictions made by 3M VAS to eye tracking on 
three different data sets.  Two of the data sets were collected 
by outside academic institutions (York University and MIT) 
and one was collected at 3M. A variety of images were 
used, which included indoor scenes, outdoor scenes, and 
advertising content. 

1One may consider web pages as content that is naturally viewed on a computer screen.  Interestingly enough web pages also have biases that  
go beyond a center bias.
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Performance was evaluated using Signal Detection ROC 
metric that takes into account how well the model correctly 
predicts a fixation (hit) along with incorrect predictions (false 
alarms).  To evaluate how well the model is able to account for 
the intrinsic variability in the data (inter-subject variability), 
we compared the model’s predictive power to that of actual 
eye-tracking data to predict eye-tracking data.  This split-data 
approach provided an upper theoretical limit on eye-fixation 
performance.

To evaluate 3M VAS we compared the model’s predictions 
to that of the upper theoretical limit produced by actual 
eye-fixations (split-data analysis) to provide a measure 
of predictive efficiency for 3M VAS.  3M VAS predictive 
efficiency is 90% for the York University images, 85% for the 
MIT images and 79% for the 3M advertising images.  The 
predictive efficiency increased dramatically when fixation 
biases (e.g., center fixation bias when viewing images on a 
computer screen) were removed from the data set.  With the 
biases removed, 3M VAS predictive efficiency was 93% for 
the York University images, 94% for the MIT images and 
85% for the 3M advertising images.
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